Publications by authors named "Zhilu Yang"

Article Synopsis
  • Cardiovascular diseases (CVD) pose a major global health risk, but the use of vascular stents has improved patient survival and quality of life.
  • Despite their benefits, stents face complications like thrombosis and in-stent restenosis (ISR), which surface modification techniques can help mitigate.
  • This paper discusses recent advancements in surface coating technologies for stents that enhance endothelial repair and address treatment challenges while highlighting the need for more research on restoring the physiological environment in vessels post-intervention.
View Article and Find Full Text PDF

Thrombosis associated with implants can severely impact therapeutic outcomes and lead to increased morbidity and mortality. Thus, developing blood-contacting materials with superior anticoagulant properties is essential to prevent and mitigate device-related thrombosis. Herein, we propose a novel single-molecule multi-functional strategy for creating blood-compatible surfaces.

View Article and Find Full Text PDF

Thrombosis and infection are pivotal clinical complications associated with interventional blood-contacting devices, leading to significant morbidity and mortality. To address these issues, we present a stepwise metal-catechol-(amine) (MCA) surface engineering strategy that efficiently integrates therapeutic nitric oxide (NO) gas and antibacterial peptide (ABP) onto catheters, ensuring balanced anti-thrombotic and anti-infective properties. First, copper ions were controllably incorporated with norepinephrine and hexanediamine through a one-step molecular/ion co-assembly process, creating a NO-generating and amine-rich MCA surface coating.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in heart failure (HF) treatment. However, their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species (ROS) microenvironment. In this study, monascus pigment (MP) nanoparticle (PPM) was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs (BMSCs).

View Article and Find Full Text PDF

Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo- foot protein 5 (-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5.

View Article and Find Full Text PDF

Hyperproliferative keratinocytes and subcutaneous inflammation contribute to the characteristic symptoms of psoriasis, including erythema, scales, or scaly plaques on the skin. These symptoms significantly affect patients' quality of life and cause severe physical and psychological distress. However, current treatment strategies have limited therapeutic effect and may lead to adverse side effects.

View Article and Find Full Text PDF

Thrombosis and infection are 2 major complications associated with central venous catheters (CVCs), resulting in substantial mortality and morbidity. The concurrent long-term administration of antibiotics and anticoagulants to address these complications have been demonstrated to cause severe side effects such as antibiotic resistance and bleeding. To mitigate these complications with minimal or no drug utilization, we developed a bioinspired zwitterionic block polymer-armored nitric oxide (NO)-generating functional coating for surface modification of CVCs.

View Article and Find Full Text PDF

Thrombosis and infection are two major complications associated with central venous catheters (CVCs), which significantly contribute to morbidity and mortality. Antifouling coating strategies currently represent an efficient approach for addressing such complications. However, existing antifouling coatings have limitations in terms of both duration and effectiveness.

View Article and Find Full Text PDF

The equiatomic AlCoCrFeNi high entropy alloy (HEA) is prone to cracking during the additive manufacturing process due to the high cooling rates observed, which limits its application to a large extent. In this study, the selective laser melting (SLM) technique was adopted to fabricate the alloy and the mechanism of crack formation was revealed. Most importantly, a new design strategy was proposed to suppress the generation of cracks, and the optimization of the preparation process was also studied in detail.

View Article and Find Full Text PDF

Universal protein coatings have recently gained wide interest in medical applications due to their biocompatibility and ease of fabrication. However, the challenge persists in protein activity preservation, significantly complicating the functional design of these coatings. Herein, an active dual-protein surface engineering strategy assisted by a facile stepwise protein-protein interactions assembly (SPPIA) method for catheters to reduce clot formation and infection is proposed.

View Article and Find Full Text PDF
Article Synopsis
  • Thrombus formation and tissue embedding hinder the effectiveness and recoverability of temporary medical devices.
  • Researchers developed a novel antifouling armor inspired by insect sclerotization to improve resistance to protein-related issues on these devices.
  • The armor, made from crosslinked bovine serum albumin and oxidized hydrocaffeic acid, significantly reduces thrombus formation by 95% while maintaining over 60% of its resistance even after 28 days in a test solution.
View Article and Find Full Text PDF

Protein and cell adhesion on temporary intravascular devices can lead to thrombosis and tissue embedment, significantly increasing complications and device retrieval difficulties. Here, we propose an endothelial glycocalyx-inspired dynamic antifouling surface strategy for indwelling catheters and retrievable vascular filters to prevent thrombosis and suppress intimal embedment. This strategy is realized on the surfaces of substrates by the intensely dense grafting of hydrolyzable endothelial polysaccharide hyaluronic acid (HA), assisted by an amine-rich phenol-polyamine universal platform.

View Article and Find Full Text PDF

Proteins, cells and bacteria adhering to the surface of medical devices can lead to thrombosis and infection, resulting in significant clinical mortality. Here, we report a zwitterionic polymers-armored amyloid-like protein surface engineering strategy we called as "armored-tank" strategy for dual functionalization of medical devices. The "armored-tank" strategy is realized by decoration of partially conformational transformed LZM (PCTL) assembly through oxidant-mediated process, followed by armoring with super-hydrophilic poly-2-methacryloyloxyethyl phosphorylcholine (pMPC).

View Article and Find Full Text PDF

Stenting is the primary treatment for vascular obstruction-related cardiovascular diseases, but it inevitably causes endothelial injury which may lead to severe thrombosis and restenosis. Maintaining nitric oxide (NO, a vasoactive mediator) production and grafting endothelial glycocalyx such as heparin (Hep) onto the surface of cardiovascular stents could effectively reconstruct the damaged endothelium. However, insufficient endogenous NO donors may impede NO catalytic generation and fail to sustain cardiovascular homeostasis.

View Article and Find Full Text PDF

An incomplete understanding of the cellular functions and underlying mechanisms of zinc ions released from zinc-based stents in atherosclerosis (AS) therapy is one of the major obstacles to their clinical translation. The existing evaluation methodology using cell monolayers has limitations on accurate results due to the lack of vascular architectures and pathological features. Herein, the authors propose a 3D biomimetic AS model based on a multi-layer vascular structure comprising endothelial cells and smooth muscle cells with hyperlipidemic surroundings and inflammatory stimulations as AS-prone biochemical conditions to explore the biological functions of zinc ions in AS therapy.

View Article and Find Full Text PDF

Control of premature corrosion of magnesium (Mg) alloy bioresorbable stents (BRS) is frequently achieved by the addition of rare earth elements. However, limited long-term experience with these elements causes concerns for clinical application and alternative methods of corrosion control are sought after. Herein, we report a "built-up" composite film consisting of a bottom layer of MgF conversion coating, a sandwich layer of a poly (1, 3-trimethylene carbonate) (PTMC) and 3-aminopropyl triethoxysilane (APTES) co-spray coating (PA) and on top a layer of poly (lactic-co-glycolic acid) (PLGA) ultrasonic spray coating to decorate the rare earth element-free Mg-2Zn-1Mn (ZM21) BRS for tailoring both corrosion resistance and biological functions.

View Article and Find Full Text PDF

Many polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (C-PU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol.

View Article and Find Full Text PDF

Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices, leading to significant mortality in clinic. To address this issue, here, we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide, with bio-orthogonal click chemistry, to tailor the surface functionalities of tubing and catheters. Inspired by mussel adhesive foot protein, a bioclickable peptide mimic (DOPA)-azide-based structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry.

View Article and Find Full Text PDF

Vascular stent is viewed as one of the greatest advancements in interventional cardiology. However, current approved stents suffer from in-stent restenosis associated with neointimal hyperplasia or stent thrombosis. Herein, we develop a nitric oxide-eluting (NOE) hydrogel coating for vascular stents inspired by the biological functions of nitric oxide for cardiovascular system.

View Article and Find Full Text PDF

The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues . In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues.

View Article and Find Full Text PDF

Upon the osteoporotic condition, sluggish osteogenesis, excessive bone resorption, and chronic inflammation make the osseointegration of bioinert titanium (Ti) implants with surrounding bone tissues difficult, often lead to prosthesis loosening, bone collapse, and implant failure. In this study, we firstly designed clickable mussel-inspired peptides (DOPA-N3) and grafted them onto the surfaces of Ti materials through robust catechol-TiO coordinative interactions. Then, two dibenzylcyclooctyne (DBCO)-capped bioactive peptides RGD and BMP-2 bioactive domain (BMP-2) were clicked onto the DOPA-N3-coated Ti material surfaces via bio-orthogonal reaction.

View Article and Find Full Text PDF

Nitric oxide (NO) is a short-lived signaling molecule that plays a pivotal role in cardiovascular system. Organic nitrates represent a class of NO-donating drugs for treating coronary artery diseases, acting through the vasodilation of systemic vasculature that often leads to adverse effects. Herein, we design a nitrate-functionalized patch, wherein the nitrate pharmacological functional groups are covalently bound to biodegradable polymers, thus transforming small-molecule drugs into therapeutic biomaterials.

View Article and Find Full Text PDF

Mimicking the nitric oxide (NO)-release and glycocalyx functions of native vascular endothelium on cardiovascular stent surfaces has been demonstrated to reduce in-stent restenosis (ISR) effectively. However, the practical performance of such an endothelium-mimicking surfaces is strictly limited by the durability of both NO release and bioactivity of the glycocalyx component. Herein, we present a mussel-inspired amine-bearing adhesive coating able to firmly tether the NO-generating species (e.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Zhilu Yang"

  • - Zhilu Yang's recent research focuses on developing advanced materials and coatings aimed at mitigating thrombosis and infection associated with blood-contacting medical devices, employing multifaceted strategies like nitric oxide generation and bioinspired surface modifications.
  • - Key findings highlight the integration of functional coatings on catheters and other implants to enhance anticoagulant and antibacterial properties, demonstrating significant potential in reducing clinical complications related to device usage.
  • - Yang's work also explores novel biomimetic approaches, such as using insect sclerotization-inspired techniques and advanced polymer architectures, to create effective antifouling surfaces that improve device biocompatibility and overall therapeutic efficacy.

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmvomsan3d38ej3ql4vofconifphiufr8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once