Transcription activator-like effector nucleases (TALENs) have become a powerful tool for genome editing due to the simple code linking the amino acid sequences of their DNA-binding domains to TALEN nucleotide targets. While the initial TALEN-design guidelines are very useful, user-friendly tools defining optimal TALEN designs for robust genome editing need to be developed. Here we evaluated existing guidelines and developed new design guidelines for TALENs based on 205 TALENs tested, and established the scoring algorithm for predicting TALEN activity (SAPTA) as a new online design tool.
View Article and Find Full Text PDFNanocrystals, despite their tiny sizes, contain thousands to millions of atoms. Here we show that the large number of atoms packed in each metallic nanocrystal can provide a huge gain in signal amplification for biomolecule detection. We have devised a highly sensitive, linear amplification scheme by integrating the dissolution of bound nanocrystals and metal-induced stoichiometric chromogenesis, and demonstrated that signal amplification is fully defined by the size and atom density of nanocrystals, which can be optimized through well-controlled nanocrystal synthesis.
View Article and Find Full Text PDFWe coated nanoparticles including iron oxide nanoparticles and quantum dots with phospholipid-PEG using the newly developed dual solvent exchange method and demonstrated that, compared with the conventional film hydration method, the coating efficiency and quality of coated nanoparticles can be significantly improved. A better control of surface coating density and the amount of reactive groups on nanoparticle surface is achieved, allowing conjugation of different moieties with desirable surface concentrations, thus facilitating biomedical applications of nanoparticles.
View Article and Find Full Text PDFWe describe a new method for coating superparamagnetic iron oxide nanoparticles (SPIOs) and demonstrate that, by fine-tuning the core size and PEG coating of SPIOs, the T2 relaxivity per particle can be increased by >200-fold. With 14 nm core and PEG1000 coating, SPIOs can have T2 relaxivity of 385 s-1 mM-1, which is among the highest per-Fe atom relaxivities. In vivo tumor imaging results demonstrated the potential of the SPIOs for clinical applications.
View Article and Find Full Text PDFAn important aspect of vascular biology is the identification of regulators of stress-sensitive genes that play critical roles in mediating inflammatory response. Here, we show that expression of HuR in human umbilical vein endothelial cells is regulated by shear stress and statin treatment; HuR, in turn, regulates other stress-sensitive genes such as Kruppel-like factor 2 (Klf2), endothelial nitric oxide synthase (eNOS), and bone morphogenic protein 4 (BMP-4). We found that siRNA knockdown of HuR-inhibited inflammatory responses in endothelial cells, including ICAM-1 and VCAM-1 up-regulation, NFkappaB phosphorylation, and adhesion of monocytes.
View Article and Find Full Text PDFEndothelial cells in vivo are well known to respond to parallel shear stress induced by luminal blood flow. In addition, fluid filtration across endothelium (transendothelial flow) may trigger nitric oxide (NO) production, presumably via shear stress within intercellular clefts. Since NO regulates neutrophil-endothelial interactions, we determined whether transendothelial flow regulates neutrophil transmigration.
View Article and Find Full Text PDFStudy Objectives: Alterations in microvascular permeability are prevalent in patients with sepsis; a recent study reported that patients with septic shock had increased capillary filtration coefficient (Kf), a noninvasive index of microvascular permeability. We aimed to determine whether patients with severe sepsis had increased Kf, and whether the magnitude of Kf correlated with indexes of nitric oxide activity and neutrophil activation.
Design: Single-center, prospective study.
Background: Cardiovascular disease is a major cause of death in end-stage renal disease (ESRD). Since growth hormone is required for maintaining normal cardiac structure and function and as growth hormone has a salutary effect on cardiac remodeling in disease, we postulated that if cardiac resistance to growth hormone develops in chronic renal failure (CRF) this may predispose to the cardiomyopathy of uremia. We set out to test whether in CRF there is resistance to the cardiac action of growth hormone and whether this defect might be caused by altered growth hormone signaling.
View Article and Find Full Text PDFMalnutrition and muscle wasting are common in chronic renal failure (CRF) and adversely affect morbidity and mortality. Contributing to the muscle wasting is resistance to growth hormone (GH). For testing whether impaired GH signaling is a cause of the skeletal muscle GH resistance and for elucidating its mechanisms, muscle GH signaling and action were studied in GH-deficient rats with surgically induced CRF and sham-operated pairfed control rats.
View Article and Find Full Text PDFAntimicrob Agents Chemother
March 2002
Rifampin penetrated biofilms formed by Staphylococcus epidermidis but failed to effectively kill the bacteria. Penetration was demonstrated by a simple diffusion cell bioassay and by transmission electron microscopic observation of antibiotic-affected cells at the distal edge of the biofilm.
View Article and Find Full Text PDF