The ability to learn the reward-value and action-outcome contingencies in dynamic environment is critical for flexible adaptive behavior and development of effective pharmacological control of goal-directed behaviors represents an important challenge for improving the deficits in goal-directed behavior which may underlie seemingly disparate symptoms across psychiatric disorders. Adenosine A receptor (AR) is emerging as a novel neuromodulatory target for controlling goal-directed behavior for its unique neuromodulatory features: the ability to integrate dopamine and glutamate signaling, the "brake" constraint of various cognitive processes and the balanced control of goal-directed and habit actions. However, the contribution and circuit mechanisms of the striatopallidal ARs in nucleus accumbens (NAc) to control of goal-directed behavior remain to be determined.
View Article and Find Full Text PDFThe striatopallidal pathway is specialized for control of motor and motivational behaviors, but its causal role in striatal control of instrumental learning remains undefined (partly due to the confounding motor effects). Here, we leveraged the transient and "time-locked" optogenetic manipulations with the reward delivery to minimize motor confounding effect, to better define the striatopallidal control of instrumental behaviors. Optogenetic (Arch) silencing of the striatopallidal pathway in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) promoted goal-directed and habitual behaviors, respectively, without affecting acquisition of instrumental behaviors, indicating striatopallidal pathway suppression of instrumental behaviors under physiological condition.
View Article and Find Full Text PDFStriatal adenosine A receptors (ARs) modulate striatal synaptic plasticity and instrumental learning, possibly by functional interaction with the dopamine D receptors (DRs) and metabotropic glutamate receptors 5 (mGluR5) through receptor-receptor heterodimers, but evidence for these interactions is lacking. Using proximity ligation assay (PLA), we studied the subregional distribution of the AR-DR and AR-mGluR5 heterodimer complexes in the striatum and their adaptive changes over the random interval and random ratio training of instrumental learning. After confirming the specificity of the PLA detection of the AR-DR heterodimers with the AR knockout and DR knockout mice, we detected a heterogeneous distribution of the AR-DR heterodimer complexes in the striatum, being more abundant in the dorsolateral than the dorsomedial striatum.
View Article and Find Full Text PDFThe striatum has an essential role in neural control of instrumental behaviors by reinforcement learning. Adenosine A(2A) receptors (A(2A)Rs) are highly enriched in the striatopallidal neurons and are implicated in instrumental behavior control. However, the temporal importance of the A(2A)R signaling in relation to the reward and specific contributions of the striatopallidal A(2A)Rs in the dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) to the control of instrumental learning are not defined.
View Article and Find Full Text PDF