Publications by authors named "Zhikuan Xu"

Flexible antennas are widely used in mobile communications, the Internet of Things, personalized medicine, aerospace, and military technologies due to their superior performance in terms of adaptability, impact resistance, high degree of freedom, miniaturization of structures, and cost-effectiveness. With excellent flexibility and portability, these antennas are now being integrated into paper, textiles, and even the human body to withstand the various mechanical stresses of daily life without compromising their performance. The purpose of this paper is to provide a comprehensive overview of the basic principles and current development of flexible antennas, systematically analyze the key performance factors of flexible antennas, such as structure, process, material, and application environment, and then discuss in detail the design structure, material selection, preparation process, and corresponding experimental validation of flexible antennas.

View Article and Find Full Text PDF

Dielectrophoresis technology is applied to microfluidic chips to achieve microscopic control of cells. Currently, microfluidic chips based on dielectrophoresis have certain limitations in terms of cell sorting species, in order to explore a microfluidic chip with excellent performance and high versatility. In this paper, we designed a microfluidic chip that can be used for continuous cell sorting, with the structural design of a curved channel and curved double side electrodes.

View Article and Find Full Text PDF

In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays.

View Article and Find Full Text PDF

Periodically tunable nano-gratings have an irreplaceable role in spectral scanning and optical communication, but the performance of gratings manufactured from different materials varies considerably, and the development of superior materials has energized the preparation of high-precision devices. This paper presents a nanoscale preparation process based on Norland Optical Adhesive 73 (NOA73), which enables the rapid preparation of periodically tunable nano-gratings with up to 100% light transmission. The powerful fluidity and shear rate of NOA73 make it uniquely suited to the preparation of precision devices, allowing the production of up to dense grating structures and offering the possibility of making nanoscale gratings.

View Article and Find Full Text PDF