The World Health Organization states that early diagnosis is essential to increasing the cure rate for breast cancer, which poses a danger to women's health worldwide. However, the efficacy and cost limitations of conventional diagnostic techniques increase the possibility of misdiagnosis. In this work, we present a quantum hybrid classical convolutional neural network (QCCNN) based breast cancer diagnosis approach with the goal of utilizing quantum computing's high-dimensional data processing power and parallelism to increase diagnosis efficiency and accuracy.
View Article and Find Full Text PDFBackground: The formation and domestication of ornamental traits are influenced by various aspects, such as the recognition of esthetic values and cultural traditions. Camellia japonica is widely appreciated and domesticated around the world mainly due to its rich variations in ornamental traits. Ornamental camellias have a diverse range of resources, including different bud variations from Camellia spp.
View Article and Find Full Text PDFBackground And Aims: The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored.
Methods: To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica.
The developmental regulation of flower organs involves the spatio-temporal regulation of floral homeotic genes. genes are plant-specific transcription factors that is involved in many aspects of plant development through gene transcriptional regulation. Although studies have shown that the genes are involved in the developmental regulation of flower organs, little is known about their role in the formation of double-flower due.
View Article and Find Full Text PDFFruit lignification is of significant economic importance because it affects the quality of fruit and the production of seed oil. The specified lignification pattern in fruits plays critical roles in its seed oil yield, but little is known about how this lignification process is regulated. Here, we report on a comprehensive tissue-specific transcriptomics analysis conducted for fruit.
View Article and Find Full Text PDFBackground: As a perennial crop, oil-Camellia possesses a long domestication history and produces high-quality seed oil that is beneficial to human health. Camellia oleifera Abel. is a sister species to the tea plant, which is extensively cultivated for edible oil production.
View Article and Find Full Text PDFCrassulacean acid metabolism (CAM) is an important photosynthetic pathway for plant adaptation to dry environments. CAM plants feature a coordinated interaction between mesophyll and epidermis functions that involves refined regulations of gene expression. Plant microRNAs (miRNAs) are crucial post-transcription regulators of gene expression, however, their roles underlying the CAM pathway remain poorly investigated.
View Article and Find Full Text PDFLong-read transcriptome sequencing is designed to sequence full-length RNA molecules and advantageous for identifying alternative splice isoforms; however, in the absence of a reference genome, it is difficult to accurately locate splice sites, because of the diversity of patterns of alternative splicing (AS). Based on long-read transcriptome data we developed a versatile tool, IsoSplitter, to reverse-trace and validate AS gene "split-sites" with the following features: (1) IsoSplitter initially invokes a modified SIM4 program to find transcript split-sites; (2) each split-site is then quantified, to reveal transcript diversity, and putative isoforms are grouped into gene clusters; (3) an optional step for aligning short-reads is provided, to validate split-sites by identifying unique junction reads, and revealing and quantifying tissue-specific alternative splice isoforms. We tested IsoSplitter AS prediction using datasets from multiple model and non-model plant species, and showed that IsoSplitter pipeline is efficient to handle different transcriptomes with high accuracy.
View Article and Find Full Text PDFCcBLH6 is a bell-like homeodomain-containing transcription factor that plays an important role of lignin biosynthesis in the control of fruit lignification pattern in Camellia chekiangoleosa. The fruit of Camellia chekiangoleosa has a unique lignification pattern that features with a thick pericarp containing a low level of lignification. Yet the fruit lignification pattern and the regulatory network of responsible gene transcription are poorly understood.
View Article and Find Full Text PDFMitochondrial DNA B Resour
July 2020
Hu is an economically valuable species in the genus . It is widely used for breeding ornaments and oil varieties. In this study, the complete chloroplast (cp) genome sequence of is assembled and annotated.
View Article and Find Full Text PDFBackground: Genome-wide change of polyadenylation (polyA) sites (also known as alternative polyadenylation, APA) is emerging as an important strategy of gene regulation in response to stress in plants. But little is known in woody perennials that are persistently dealing with multiple abiotic stresses.
Results: Here, we performed a genome-wide profiling of polyadenylation sites under heat and cold treatments in Populus trichocarpa.
Direct single-molecule sequencing of full-length transcripts allows efficient identification of gene isoforms, which is apt to alternative splicing (AS), polyadenylation, and long non-coding RNA analyses. However, the identification of gene isoforms and long non-coding RNAs with novel regulatory functions remains challenging, especially for species without a reference genome. Here, we present a comprehensive analysis of a combined long-read and short-read transcriptome sequencing in .
View Article and Find Full Text PDFMitochondrial DNA B Resour
October 2019
is an economic woody plant producing high-value edible oils, which is commonly found and cultivated in south areas of China. To provide genetic information for future genetic research, we have sequenced and assembled the complete chloroplast (cp) genome of based on the Illumina Hiseq platform. The total genome size is 161,958 bp in length with 37% GC, which contains a large single copy (LSC, 86,657 bp) region, a small single copy (SSC, 13,347 bp) region, and a pair of inverted repeat (IRs, 30,977 bp) regions.
View Article and Find Full Text PDFWith the rapid development of personal computers and portable electronics, people have to get rid of a lot of unwanted electromagnetic pollution. The development of high performance electromagnetic interference (EMI) shielding materials is of critical importance to address ever-increasing military and civilian demand. Owing to its high electrical conductivity and flexible 3D structure, graphene sponge has great potential for excellent EMI shielding performance.
View Article and Find Full Text PDFFruit patterning involves the cooperation of multiple processes, including metabolic change, cell differentiation, and cell expansion. The FRUITFUL (FUL) and SHATTERPROOF1/2 (SHPs) MADS-box genes are master regulators directing fruit patterning in several eudicots. However, the regulatory mechanisms of the FUL-SHP network in different fruit types remain unclear.
View Article and Find Full Text PDFWith the increasing power of DNA sequencing, the genomics-based approach is becoming a promising resolution to dissect the molecular mechanism of domestication of complex traits in trees. Genus possesses rich resources with a substantial value for producing beverage, ornaments, edible oil and more. Currently, a vast number of genetic and genomic research studies in plants have emerged and provided an unprecedented opportunity to expedite the molecular breeding program.
View Article and Find Full Text PDF