Publications by authors named "Zhikang Ao"

Transition metal dichalcogenides (TMDs), such as tungsten diselenide (WSe), are expected to be used in next-generation optoelectronic devices due to their unique properties. In this study, we developed a simple method of using ethanol to scroll monolayer WSe nanosheets into nanoscrolls. These nanoscrolls have a quasi-one-dimensional structure, which enhances their electronic and optical properties.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on using atomic substitution to create precise semiconductor heterostructures in two-dimensional (2D) materials, which is essential for advancing technology.
  • - Researchers successfully synthesized monolayer WSe-WS heterostructures with a sharp interface by applying a high-temperature chalcogen atom-exchange method, controlling the reaction through time and temperature.
  • - The methods employed included spectroscopies and microscopy to analyze the process, revealing that strain plays a significant role in transforming the materials, showcasing a new way to engineer 2D materials at the atomic level.
View Article and Find Full Text PDF

Low-dimensional nanostructures, especially one-dimensional materials, exhibit remarkable anisotropic characteristics due to their low symmetry, making them promising candidates for polarization-sensitive photodetection. Here, we present a chemical vapor deposition synthesis method for tellurium suboxide (TeOx), confirming the practicality of photodetectors constructed from TeOx nanowires (NWs) in high-responsivity, broadband, and polarization-sensitive detection. By precisely controlling the thermodynamics and kinetics of TeOx NWs growth, we achieve large-scale growth of TeOx NWs with highly controllable dimensions and propose a method to induce intrinsic built-in strain in TeOx NWs.

View Article and Find Full Text PDF

The intrinsic low-symmetry crystal structures or external geometries of low-dimensional materials are crucial for polarization-sensitive photodetection. However, these inherently anisotropic materials are limited in variety, and their anisotropy is confined to specific crystal directions. Transforming 2D semiconductors, such as WSe, from isotropic 2D nanosheets into anisotropic 1D nanoscrolls expands their application in polarization photodetection.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a new one-dimensional/two-dimensional (1D/2D) homojunction structure that combines different material dimensions for advanced electronic applications.
  • - This structure shows strong performance in photodetection across a wide spectrum, from visible to near-infrared light, with minimal dark current and impressive on/off ratios.
  • - Its unique low symmetry leads to polarization-sensitive detection, demonstrating significant anisotropy and implying potential for innovative optoelectronic detector development.
View Article and Find Full Text PDF