Publications by authors named "Zhikai Tan"

Tumors pose a serious threat to people's lives and health, and the complex tumor microenvironment is the biggest obstacle to their treatment. In contrast to the basic protein matrices typically employed in 2D or 3D cell culture systems, decellularized extracellular matrix (dECM) can create complex microenvironments. In this study, a combination of physicochemical methods was established to obtain liver decellularized extracellular matrix scaffolds (dLECMs) to provide mechanical support and cell adhesion sites.

View Article and Find Full Text PDF

Regeneration of the architecturally complex blood vascular system requires precise temporal and spatial control of cell behaviours. Additional components must be integrated into the structure to achieve clinical success for in situ tissue engineering. Consequently, this study proposed a universal method for including any substrate type in vascular cell extracellular matrices (VCEM) via regulating selective adhesion to promote vascular tissue regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • There is an urgent need for engineered scaffolds to help form and maintain adipose tissue for surgical use.
  • Researchers optimized adipose regeneration methods and created decellularized adipose tissue (DAT) scaffolds that are biocompatible.
  • The study demonstrated that using DAT with preadipocytes promotes the growth and differentiation of new adipose tissue, showing promise for future applications in clinical tissue engineering.
View Article and Find Full Text PDF

Islet transplantation improves diabetes patients' long-term blood glucose control, but its success and utility are limited by cadaver availability, quality, and considerable islet loss after transplantation due to ischemia and inadequate angiogenesis. This study used adipose, pancreatic, and liver tissue decellularized extracellular matrix (dECM) hydrogels in an effort to recapitulate the islet sites inside the pancreas , and successfully generated viable and functional heterocellular islet micro-tissues using islet cells, human umbilical vein endothelial cells, and adipose-derived mesenchymal stem cells. The three-dimensional (3D) islet micro-tissues maintained prolonged viability and normal secretory function, and showed high drug sensitivity in drug testing.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a common and aggressive brain tumor known for its poor prognosis and high recurrence rates, but the mechanisms driving its progression are not fully understood.
  • A study used advanced proteomic analysis to find that the E3 ligase MAEA is highly expressed in recurrent GBM samples, linking it to tumor recurrence and worse patient outcomes.
  • The research indicates that MAEA promotes tumor growth and resistance to treatment by stabilizing HIF-1α, which in turn enhances cancer stemness markers like CD133, suggesting that targeting MAEA could be a potential therapeutic strategy.
View Article and Find Full Text PDF

There is a critical need to developculture systems appropriate for the expansion of adipose tissue, in order to gain new insights into metabolic diseases and to assist in the restoration of tissue defects. Conventional two- or three-dimensional (2D or 3D)models of adipocytes require a combination of supplements to induce adipocyte maturation that greatly increases the cost of large-scale industrial production. In the present study, a microporous, perforated bacterial cellulose (BC)-assisted culture system was developed that promoted the adhesion, proliferation, and adipogenic differentiation of preadipocytes.

View Article and Find Full Text PDF

The tumor microenvironment (TME) determines tumor progression and affects clinical therapy. Its basic components include cancer-associated fibroblasts (CAFs) and tumor-associated endothelial cells (TECs), both of which constitute the tumor matrix and microvascular network. The ability to simulate interactions between cells and extracellular matrix in a TME can assist the elucidation of cancer growth and evaluate the efficiency of therapies.

View Article and Find Full Text PDF

Tumors are commonly treated by resection, which usually leads to massive hemorrhage and tumor cell residues, thereby increasing the risk of local recurrence and distant metastasis. Herein, an intelligent 3D-printed poly(lactic-co-glycolic acid), gelatin, and chitosan scaffold loaded with anti-cancer drugs was prepared that showed hemostatic function and good pH sensitivity. Following implantation in wounds, the scaffolds absorbed hemorrhage and cell residues after surgery, and promoted wound healing.

View Article and Find Full Text PDF

Cisplatin (CDDP) is a widely used and effective basic chemotherapeutic drug for the treatment of a variety of tumors, including ovarian cancer. However, adverse side effects and acquired drug resistance are observed in the clinical application of CDDP. Identifying a mode of administration that can alleviate side effects and reduce drug resistance has become a promising strategy to solve this problem.

View Article and Find Full Text PDF

Drug-loaded implants have attracted considerable attention in cancer treatment due to their precise delivery of drugs into cancer tissues. Contrary to injected drug delivery, the application of drug-loaded implants remains underutilized given the requirement for a surgical operation. Nevertheless, drug-loaded implants have several advantages, including a reduction in frequency of drug administration, minimal systemic toxicity, and increased delivery efficacy.

View Article and Find Full Text PDF

Purpose: Combination chemotherapy is gradually receiving more attention because of its potential synergistic effect and reduced drug doses in clinical application. However, how to precisely control drug release dose and time using vehicles remains a challenge. This work developed an efficient drug delivery system to combat breast cancer, which can enhance drug effects despite reducing its concentration.

View Article and Find Full Text PDF

Injuries to the skin are common in daily life, and a certain type or size of defect is not easily restored using conventional dressings or naturally. The repair of these defects requires restoration of function in regenerated tissues. In this study, a tissue engineered skin was designed and fabricated using a bio-3D printing system.

View Article and Find Full Text PDF

Introduction: In this study, we report on the development of an effective delivery system for siRNAs; a novel cell-penetrating peptide (CPP), T9(dR), obtained from transportan (TP), was used for in vivo and in vitro testing.

Methods: In this study, toxicity of T9(dR) and TP and efficient delivery of siRNA were tested in 293T, MDCK, RAW, and A549 cells. Furthermore, T9(dR)- and TP-delivered siRNAs against nucleoprotein (NP) gene segment of influenza virus (siNP) were studied in both cell lines and mice.

View Article and Find Full Text PDF

Background: Skeletal muscle tissue engineering often involves the prefabrication of muscle tissues in vitro by differentiation and maturation of muscle precursor cells on a platform which provides an environment that facilitates the myogenic differentiation of the seeded cells.

Methods: Poly lactic-co-glycolic acid (PLGA) 3D printed scaffolds, which simulate the highly complex structure of extracellular matrix (ECM), were fabricated by E-jet 3D printing in this study. The scaffolds were used as platforms, providing environment that aids in growth, differentiation and other properties of C2C12 myoblast cells.

View Article and Find Full Text PDF

The development of accurate and predictive in vitro experimental models of human tumors consistent with in vivo tumor microenvironments has garnered great attention in modern cancer research. 3D scaffolds are fabricated in this study by E-jet 3D printing with the aim of replicating the functionalities of tumor microenvironments in vitro which could be applicable as screening platforms for novel therapeutic strategies. Tumor protein 53 (p53) plays an important role in penetration and migration in 2D cell culture.

View Article and Find Full Text PDF

Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying.

View Article and Find Full Text PDF

Magnetic hyperthermia has been rapidly developed as a potential cancer treatment in recent years. Artificially induced hyperthermia close to a tumor can raise the temperature to 45°C causing tumor cell death. Herein, we introduce a novel method for rapid preparation of anti-cancer magnetocaloric PCL/Fe O mats capable of high-performance hyperthermia using E-jet 3D printing technology.

View Article and Find Full Text PDF

Demand is increasing for functional small-diameter vascular grafts (diameter<6mm) for clinical arterial replacement. In the present study, we develop a bilayer poly(ε-caprolactone, PCL) fibrous vascular graft consisting of a thin internal layer made of longitudinally aligned fibers and a relatively thick highly porous external layer. The internal layer provides a scaffold with the necessary mechanical strength and enhances the growth of endothelial cells, whereas the external layer enhances cell motility through the scaffold bulk.

View Article and Find Full Text PDF

Biocompatible tissue growth has excellent prospects for tissue engineering. These tissues are built over scaffolds, which can influence aspects such as cell adhesion, proliferation rate, morphology, and differentiation. However, the ideal 3D biological structure has not been developed yet.

View Article and Find Full Text PDF

The ideal 3D scaffold for biological applications has not yet been designed. Our aim is to better match the scaffold performance through fine control of the fabrication process. Here, we applied electro-hydrodynamic jet (E-jet) 3D printing technology using poly-(lactic-co-glycolic acid) (PLGA) solution to construct scaffolds for tissue engineering applications.

View Article and Find Full Text PDF

Colon cancer is still the third most common cancer which has a high mortality but low five-year survival rate. Novel tyrosine kinase inhibitors (TKI) such as pazopanib become effective antineoplastic agents that show promising clinical activity in a variety of carcinoma, including colon cancer. However, the precise underlying mechanism against tumor is unclear.

View Article and Find Full Text PDF

There is an increasing demand for functional small-diameter vascular grafts (diameter<6mm) to be used in clinical arterial replacement. An ideal vascular graft should have appropriate biomechanical properties and be biocompatible. Electrospinning has become a popular polymer processing technique for vascular tissue engineering, but the grafts fabricated by electrospinning often have relatively small pores and low porosity, which limit cell infiltration into scaffolds and hinder the regeneration and remodeling of grafts.

View Article and Find Full Text PDF