Transarterial chemoembolization (TACE) is an optional treatment for hepatocellular carcinoma (HCC) patients with macrovascular invasion (MVI) and without extrahepatic metastasis (EHM). As a recently emerging approach, the efficacy of hepatic arterial infusion chemotherapy (HAIC) compared with TACE in this group of patients is unclear. Between December 2016 and June 2020, patients diagnosed with HCC with MVI and without EHM who underwent TACE (n=91) or HAIC (n=190) as their initial treatment were included.
View Article and Find Full Text PDFThe installation of -difluoromethylene groups into two adjacent aryl groups is a formidable synthetic challenge despite their attractive structural, physical, and biochemical properties. Herein, we disclose a photoredox-catalyzed selective defluoroarylation of heteroarenes through inert C(sp)-F and C(sp)-H selective cleavage, which provides a straightforward route to access medicinally relevant aryl-heteroaryl or heteroaryl-heteroaryl difluoromethane scaffolds. Salient features of this reaction include readily accessible starting materials, metal-free conditions, and broad substrate scope.
View Article and Find Full Text PDFBackground: Peritoneal metastasis is the most common metastasis pattern of gastric cancer. Patients with gastric cancer peritoneal metastasis (GCPM) have a poor prognosis and respond poorly to conventional treatments. Recently, immune checkpoint blockade (ICB) has demonstrated favourable efficacy in the treatment of GCPM.
View Article and Find Full Text PDFThe investigation about the mechanism of crystal plane regulation on the generation of oxygen vacancies remains a challenge. In this paper, BiOBr/FeMoO composites were synthesized by precise control of crystal plane growth, and it exhibited the enhanced concentration of oxygen vacancies due to lower formation energy of oxygen vacancies. The composite performs higher photo-Fenton-like ability for degrading oxytetracycline hydrochloride (OTC).
View Article and Find Full Text PDFDirect conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments CN/Cu(111) ( = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C intermediates and finally changes the fundamental reaction mechanism.
View Article and Find Full Text PDFAqueous Zn-ion batteries (ZIBs) are promising next-generation energy storage devices, yet suffer from the issues of hydrogen evolution reaction (HER) and intricate side reactions on the Zn anode surface. The hydrogen (H)-bond networks play a critical role in interfacial proton transport that may closely relate to HER but are rarely investigated. Herein, we report a self-assembled monolayer (SAM) strategy which is constructed by anchoring ionic liquid cations on TiCT substrate for HER-free Zn anode.
View Article and Find Full Text PDFWe disclose herein a novel photoredox and cobalt co-catalyzed ring-opening/acceptorless dehydrogenative functionalization of mono-donor cyclopropanes. This sustainable and atom-economic approach allows the rapid assembly of a wide range of allylic N,O-acyl-acetal derivatives. The starting materials are readily available and the reaction features mild conditions, broad substrate scope, and excellent functional group compatibility.
View Article and Find Full Text PDFThe development of a synthetic strategy for rapid assembly of biologically relevant multisubstituted furans is an appealing but challenging task. Herein, we disclose NHC and organophotocatalysis cocatalyzed three-component radical 1,4-diacylation/cycloisomerization cascade process of readily available 1,3-enynes, which provides an efficient and straightforward entry to a wide range of polysubstituted furans with good yields and excellent regio- and chemoselectivities. The reaction features mild conditions, broad substrate scopes, and good functional group compatibilities.
View Article and Find Full Text PDFBackground: Lack of opportunity for radical surgery and postoperative tumor recurrence are challenges for surgeons and hepatocellular carcinoma (HCC) patients. This study aimed to develop nomograms to predict recurrence risk and recurrence-free survival (RFS) probability after conversion hepatectomy for patients previously receiving transarterial interventional therapy.
Methods: In total, 261 HCC patients who underwent conversion liver resection and previously received transarterial interventional therapy were retrospectively enrolled.
Protein channels on the biofilm conditionally manipulate ion transport via regulating the distribution of charge residues, making analogous processes on artificial membranes a hot spot and challenge. Here, we employ metal-organic frameworks (MOFs) membrane with charge-adjustable subnano-channel to selectively govern ion transport. Various valent ions are binded with crown ethers embedded in the MOF cavity, which act as charged guest to regulate the channels' charge state from the negativity to positivity.
View Article and Find Full Text PDFInspired by recent advances on functional modification of cellulosic materials, the crosslinking behaviors of epoxide with cellulose under the catalysis of different homogeneous catalysts including HO, Brønsted acid, Brønsted base, Lewis acid and neutral salt were systematically investigated using density functional theory (DFT) methods with hybrid micro-solvation-continuum approach. The results showed that catalytic activity, reaction mechanism and regioselectivity are determined by the combined effect of catalyst type, electronic effect and steric hindrance. All the homogeneous catalysts have catalytic activity for the crosslinking reaction, which decreases in the order of NaOH > HCl > NCl > MCl > CHCOOH > NaCl (N = Fe, Al; M = Zn, Ca).
View Article and Find Full Text PDFThe constructing of artificial channels with gating functions is an important undertaking for gaining insight into biological process and achieving efficient bionic functions. Typically, controllable transport within such channels relies on either electrostatic or specific interactions between the transporting species and the channel. However, for molecules with weak interactions with the channel, achieving precise gating of the transport remains a significant challenge.
View Article and Find Full Text PDFThe oxidation/weathering of molybdenite (MoS) is too slow to be monitored, even under pure oxygen and high temperatures, while it proceeds rapidly through humid air. The adsorption of water molecules on molybdenite is necessary for the wet oxidation/weathering of molybdenite. Therefore, we employ kinetic Monte Carlo modeling to clarify the adsorption isotherm, site preferences and kinetics of water on different surfaces of molybdenite.
View Article and Find Full Text PDFRechargeable magnesium (Mg) batteries based on conventional electrolytes are seriously plagued by the formation of the ion-blocking passivation layer on the Mg metal anode. By tracking the Mg solvation sheath, this work links the passivation components to the Mg -solvents (1,2-dimethoxyethane, DME) coordination and the consequent thermodynamically unstable DME molecules. On this basis, we propose a methodology to tailor solvation coordination by introducing the additive solvent with extreme electron richness.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2022
Right here, flower-like FeMoO@1T-MoS composites were prepared by modifying FeMoO microspheres with two-dimensional lamellar 1T-MoS as co-catalyst, which was used for photo-Fenton catalysis degradation of binary dyes mixed with methylene blue (MB) and rhodamine B (RhB). Then various parameters affecting the generation of ·OH in the system were investigated. Systematic research shows that the degradation efficiency of MB and RhB can reach 99.
View Article and Find Full Text PDFAlkynes and cyclopropanes are vital motifs in chemistry. Herein, a photoredox catalyzed 1,3-oxyalkynylation of aryl cyclopropanes with ethylnylbenziodoxolones (EBXs) in an atom-economic fashion is described. This cascade comprises single-electron oxidation of the aryl cyclopropane and nucleophilic ring opening followed by radical alkynylation at the benzylic position.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2021
Cyclopropanes are an important class of building blocks in organic synthesis. Herein, a ring-opening/arylcarboxylation/acylation cascade reaction for the 1,3-difunctionalization of aryl cyclopropanes enabled by cooperative NHC and organophotoredox catalysis is reported. The cascade works on monosubstituted cyclopropanes that are in contrast to the heavily investigated donor-acceptor cyclopropanes more challenging to be difunctionalized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
The "shuttle effect" of soluble lithium polysulfides (LPS), which causes rapid capacity fading, remains a lingering issue for lithium-sulfur batteries (LSBs). Herein, we report a new type of reactive molecule-based LPS trapper, zinc acetate-diethanolamine (Zn(OAc)·DEA), which demonstrates a molecular efficiency of 1.8 for LPS trapping, approaching its theoretical limit of 2, which is the highest trapping capability reported so far.
View Article and Find Full Text PDFA novel Pd -catalyzed highly regio- and enantioselective [3+2] spiroannulation reaction has been developed for rapid assembly of a new class of [5,5] spirocyclic carbo- and heterocycles. Notably, the regioselectivity could be dominated by fine-tuning of the Pd-π-allyl intermediate. An array of coupling partners could be well-tolerated with excellent regio-, and enantioselectivities.
View Article and Find Full Text PDFA highly regio-, diastereo-, and enantioselective trimethylenemethane (TMM) cycloaddition reaction for the rapid assembly of 2-acyl-methylenecyclopentane in an atom-economic fashion is described. This intermolecular protocol allows for facile and divergent access to an array of structurally attractive cyclic adducts. The choice of a robust chiral diamidophosphite ligand, developed by our group, proved to be crucial for the success of this transformation.
View Article and Find Full Text PDFCu-based catalysts have been widely used for water-gas shift reaction (WGS, CO + HO → CO + H), and α-MoC support also shows the good performance for the reaction. Therefore, WGS reaction is systematically studied over Cu/α-MoC by using density functional theory (DFT). DFT result shows the strong metal-support interaction between Cu and α-MoC(111) support.
View Article and Find Full Text PDFThe efficient and selective synthesis of functionalized seven-membered rings remains an important pursuit within synthetic organic chemistry, as this motif appears in numerous drug-like molecules and natural products. Use of cycloaddition reactions remains an attractive approach for their construction within the perspective of atom and step economy. Additionally, the ability to combine multiple components in a single reaction has the potential to allow for efficient combinatorial strategies of diversity-oriented synthesis.
View Article and Find Full Text PDFThe development of the palladium-catalyzed allylic alkylation of generated boron enolates tandem 1,4-hydroboration is reported. Investigation of the reaction revealed insights into specific catalyst electronic features as well as a profound leaving group effect that proved crucial for achieving efficient allylic alkylation of ester enolates at room temperature and ultimately a highly preparatively useful synthesis of notoriously challenging acyclic all-carbon quaternary stereocenters. The method demonstrates boron enolates as viable pro-nucleophiles in transition-metal catalyzed allylic alkylation, potentially opening up further transformations outside their traditional use.
View Article and Find Full Text PDF