Publications by authors named "Zhijun Yan"

Article Synopsis
  • Optical fiber sensors are effective for glucose detection due to their low cost, small size, and operational ease, but previous methods using phenylboronic acid lack renewable regeneration capabilities.
  • This study presents a new sensor utilizing succinylaminobenzenoboronic acid (BPOA) instead, which provides a stable platform for glucose detection and demonstrates improved linearity and sensitivity compared to traditional methods.
  • The results indicate that the BPOA-based sensor maintains consistent binding affinity for glucose over multiple cycles, paving the way for advanced wearable glucose monitoring devices.
View Article and Find Full Text PDF

This Letter presents what is to our knowledge a novel approach to reduce the digital signal processing (DSP) complexity in intensity modulation and direct detection (IM/DD) systems, which is critical for short-reach optical communication systems with severe bandwidth limitations. We propose a sub-baud rate sampling reception method utilizing a polyphase feedforward equalizer-based maximum likelihood sequence estimation (PFFE-MLSE), which could operate effectively under a sampling rate of 0.6 samples per symbol.

View Article and Find Full Text PDF

In this study, a novel magnetic Ni-FeO-C catalyst combined with electromagnetic induction heating in biomass steam gasification was proposed to enhance H production. Better catalytic performance for H production was observed with the Ni-FeO-C catalyst under induction heating, resulting in an increase in H yield from 735.1 to 2271.

View Article and Find Full Text PDF

In this paper, the tribological characteristics of an oil-soluble magnetic fluid additive under mixed lubrication are studied by experiments and numerical simulation. [bmim][FeCl] is dissolved in CF10W-40 lubricating oil as a magnetic liquid additive, and its friction coefficient is tested by a point contact friction tester at different temperatures, rotational speeds and magnetic field intensities. The transition condition of lubrication state is obtained through analyzing the Stribeck curves based on the experiments, and the strength model of boundary film is established accordingly.

View Article and Find Full Text PDF

The optical fiber distributed strain sensor based on the optical frequency domain reflectometer (OFDR) preserves its dominant position in short-distance measurement fields with high spatial resolution, such as biomedical treatment, soft robot, etc. However, owing to the weak intensity of the Rayleigh backscattered signal (RBS) in the single-mode fiber (SMF) and complex computation, the large strain changes cannot be precisely and rapidly demodulated by the traditional cross-correlation method. In this work, the OFDR with backscattering enhanced optical fiber (BEOF) is proposed and demonstrated for fast and large strain measurement.

View Article and Find Full Text PDF

As a pivotal element in market mechanisms, carbon trading is increasingly recognized as crucial for achieving China's Carbon Peaking and Carbon Neutrality Goals. This study introduces a comprehensive dynamic model, integrating carbon trading, emissions, economic growth, and green technology innovation, to offer a holistic understanding of the interplay between these domains. Utilizing principles from nonlinear dynamics and chaos theory, the model is adept at simulating various scenarios and assessing the effectiveness of government policies in stabilizing these complex systems.

View Article and Find Full Text PDF

Silicon (Si) anode has attracted broad attention because of its high theoretical specific capacity and low working potential. However, the severe volumetric changes of Si particles during the lithiation process cause expansion and contraction of the electrodes, which induces a repeatedly repair of solid electrolyte interphase, resulting in an excessive consuming of electrolyte and rapid capacity decay. Clearly known the deformation and stress changing at µε resolution in the Si-based electrode during battery operation provides invaluable information for the battery research and development.

View Article and Find Full Text PDF

A fiber Bragg grating (FBG) displacement sensor based on synchronous sensing is developed for real-time monitoring of a tunnel lining. The sensing principle and mechanical structure of the proposed sensor are analyzed and simulated, and its sensitization effectiveness and temperature compensation are verified. Equivalent model tests show that the sensor has a good linear sensitivity of 19.

View Article and Find Full Text PDF

Background: The growth of social media platforms has created a plethora of user-generated content, and social media has become an important channel of users to express their emotions. Although many studies have explored the influencing factors on user-generated content, there is an insufficient understanding the impact temporal cues on mental health content generation.

Objective: This study aimed to explore how the on-the-hour time points affect users' anxiety content generation on social media platforms.

View Article and Find Full Text PDF

Mode-locked lasers with ultra-narrow spectral widths and durations of hundreds of picoseconds can be versatile light sources for a variety of newly emergent applications. However, less attention seems to be given to mode-locked lasers that generate narrow spectral bandwidths. We demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) system that relies on a standard fiber Bragg grating (FBG) and the nonlinear polarization rotation (NPR) effect.

View Article and Find Full Text PDF

Although parthenogenesis is widespread in nature and known to have close relationships with bisexuality, the transitional mechanism is poorly understood. Artemia is an ideal model to address this issue because bisexuality and "contagious" obligate parthenogenesis independently exist in its congeneric members. In the present study, we first performed chromosome spreading and immunofluorescence to compare meiotic processes of Artemia adopting two distinct reproductive ways.

View Article and Find Full Text PDF

To survive under harsh environments, embryonic development of Artemia was arrested at the gastrula stage and released as the diapause embryo. Cell cycle and metabolism were highly suppressed in this state of quiescence. However, cellular mechanisms underlying diapause remain largely unclear.

View Article and Find Full Text PDF

Doublesex (DSX) proteins are members of the Doublesex/mab-3-related (DMRT) protein family and play crucial roles in sex determination and differentiation among the animal kingdom. In the present study, we identified two Doublesex (Dsx)-like mRNA isoforms in the brine shrimp Artemia franciscana (Kellogg 1906), which are generated by the combination of alternative promoters, alternative splicing and alternative polyadenylation. The two transcripts exhibited sex-biased enrichment, which we termed AfrDsxM and AfrDsxF.

View Article and Find Full Text PDF

For the influence of boundary film on the lubrication state of sliding friction pairs, a boundary film strength model was proposed that can comprehensively reflect the influences of film thickness, pressure, shear stress and temperature. The model parameters were obtained through fitting the test results. Then, a mixed lubrication model considering boundary film strength was established by coupling the boundary film strength model with the hydrodynamic lubrication model and the asperity contact model.

View Article and Find Full Text PDF

In order to suppress the noise of the coherent fiber distributed acoustic sensing (DAS) system, the spatio-temporal joint oversampling-downsampling technique is proposed. The spatial oversampling is used for artificially dense sampling, whose spacing is far less than the target spatial resolution. Then the spatial downsampling performed by the average of multiple differential sub-vectors is utilized to reduce the influence of noise vectors, which could completely eliminate the interfere fading without increasing any system complexity and introducing any crosstalk.

View Article and Find Full Text PDF

Nowadays, early defect detection plays a significant role for the railway safety warning. However, the existing methods cannot satisfy the requirements of real-time and high-precision detection. Here, a high-precision, distributed and on-line method for detecting rail defect is proposed and demonstrated.

View Article and Find Full Text PDF

A wavelength-tunable noise-like pulse (NLP) erbium-doped fiber laser incorporating PbS quantum dot (QD) polystyrene (PS) composite film as a saturable absorber (SA) is experimentally demonstrated. The wavelength tuning is implemented via a Lyot filter consisting of a segment of polarization-maintaining fiber (PMF) and a 45° tilted fiber grating. By adjusting the polarization state of the ring cavity, the laser can deliver NLP with a continuous wavelength-tunable range from 1550.

View Article and Find Full Text PDF

We have numerically and experimentally presented the diffraction characteristics of radiated tilted fiber grating (RTFG) in terms of the spectrum, bandwidth, degree of polarization, angular dispersion, and temperature crosstalk. The theoretical and experimental results have shown that the polarization property, bandwidth, and dispersion of RTFG highly depended on the tilt angle of RTFG, and the RTFG has ultra-low temperature crosstalk. We have simulated the transmission spectrum of the RTFG with different tilt angles (25°, 31°, 38°, 45°, and 54°), in which the results show that the larger tilt angle has the wider bandwidth.

View Article and Find Full Text PDF

In this Letter, we have proposed an in-fiber duplex optical antenna based on a 45° radiated titled fiber grating (RTFG), in which the 45° RTFG not only radiates the light from the fiber core to the free space, but also harvests the light from the free space back into the fiber core. Using the finite difference time domain method, we have theoretically analyzed the light recoupling efficiency of the RTFG. The simulated results have shown that the RTFG-based optical antennas have a maximum coupling efficiency of 10%.

View Article and Find Full Text PDF

In this paper, the surface texture parameters and distribution patterns are studied by numerical simulation and experiment. First, a three-dimensional micro-textured CFD fluid lubrication model with cavitation effect is established, and different texture arrays are designed to study the influence of different distribution modes on bearing capacity, friction coefficient and pressure distribution of the oil film. Then, the simulation results are further analyzed and verified by the visualized plane slider experimental platform, and the formation rules of cavitation bubbles in the micro-textured array, as well as the influences of the surface shape and different distribution modes of the micro-textured array on the cavitation bubbles are discussed.

View Article and Find Full Text PDF

A multi-channel parallel ultrasound detection system based on a photothermal tunable fiber optic sensor array is proposed. The resonant wavelength of the ultrasound sensor has a quadratic relationship with the power of a 980-nm heating laser. The maximum tuning range is larger than 15 nm.

View Article and Find Full Text PDF

With zero excess lithium, anode-free lithium metal batteries (AFLMBs) can deliver much higher energy density than that of traditional lithium metal batteries. However, AFLMBs are prone to suffer from rapid capacity loss and short life. Monitoring and analyzing the capacity decay of AFLMBs are of great importance for their future applications.

View Article and Find Full Text PDF