Publications by authors named "Zhijun Ren"

The landscape of N-methyadenosine (mA) on different RNA isoforms is still incompletely understood. Here, in HEK293T cells, we endogenously label the methylated mA sites on single Oxford Nanopore Technology (ONT) direct RNA sequencing (DRS) reads by APOBEC1-YTH-induced C-to-U mutations 10-100 nt away, obtaining 1,020,237 5-mer single-read mA signals. We then trained m6Aiso, a deep residual neural network model that accurately identifies and quantifies mA at single-read resolution.

View Article and Find Full Text PDF

Due to synergistically enhanced separation and degradation performances, photocatalytic membranes offer an environmentally friendly and energy-sustainable method for water purification. However, a comprehensive review on preparation and application of photocatalytic membranes is still lacking. Systematically comparing different photocatalytic membrane fabrication methods and revealing the underlying mechanisms of their respective applications are of particular interest.

View Article and Find Full Text PDF

Owing to their widely available source materials, simple magnetic separation, and low cost, magnetic catalysts have demonstrated considerable application potential in modern photocatalysis technologies and environmental remediation. This review summarizes the synthesis and modification methods of magnetic catalysts and describes recent advances using different synthesis methods. Several key problems still need to be solved in the existing progress, such as the fact that the catalytic activity of magnetic catalysts decreases over time.

View Article and Find Full Text PDF

Self-assembly monolayer (SAM) hole transporters, consisting of anchoring, spacer, and terminal groups, have played a significant role in the development of inverted perovskite solar cells (PSCs). However, the weak interaction between perovskite and hydrophobic terminal group of SAMs limits surface wettability and interface stability. To address this issue, two novel hole transporters (named DBPP and Poly-DBPP) with centrosymmetric biphosphonic acid groups are developed.

View Article and Find Full Text PDF

Enhancing extracellular electron transfer (EET) efficiency is crucial for improving the anaerobic digestion (AD) system's capability to treat recalcitrant wastewater. In this study, a novel S, N co-doped biochar (S-N-BC) was prepared through surface engineering to optimize EET within AD systems. The addition of S-N-BC significantly enhanced the performance of a mesophilic AD system treating Congo red wastewater, increasing the decolorization rate by 78 %, COD degradation rate by 82 %, and methane yield by 87 % compared to the control.

View Article and Find Full Text PDF

In this research, typical industrial scenarios were analyzed optimized by machine learning algorithms, which fills the gap of massive data and industrial requirements in ultrasonic sludge treatment. Principal component analysis showed that the ultrasonic density and ultrasonic time were positively correlated with soluble chemical oxygen demand (SCOD), total nitrogen (TN), and total phosphorus (TP). Within five machine learning models, the best model for SCOD prediction was XG-boost (R = 0.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created iron and nitrogen co-modified biochar (FNC) that enhances the decolorization of Congo red dye and improves methane production during AD treatments.
  • * FNC stabilizes the microbial community by promoting extracellular polymeric substances (EPS) and facilitating electron transfer, which helps in both dye decolorization and the overall stability of anaerobic granular sludge.
View Article and Find Full Text PDF
Article Synopsis
  • The algal-bacterial symbiosis system (ABSS) is a sustainable method for treating wastewater, effective in removing heavy metals and emerging pollutants.
  • This review covers the different reactor types, factors affecting the ABSS process, and introduces a new approach that combines ABSS with other techniques to improve the removal of hard-to-biodegrade pollutants.
  • It also explores the microscopic interactions between algae and bacteria, such as nutrient exchange and signaling, while providing future recommendations to enhance ABSS technology for better wastewater treatment.
View Article and Find Full Text PDF

Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD.

View Article and Find Full Text PDF

Organic semiconductors (e.g., PCBM and IDIC) frequently serve as interface passivants for perovskite solar cells (PSCs) due to their beneficial passivation effects on perovskite interfaces.

View Article and Find Full Text PDF

The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores.

View Article and Find Full Text PDF

Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature.

View Article and Find Full Text PDF

To reduce pollution and carbon emissions, a quantitative evaluation of the carbon footprint of the wastewater treatment processes is crucial. However, micro carbon element flow analysis is rarely focused considering treatment efficiency of different technology. In this research, a comprehensive carbon footprint analysis is established under the micro carbon element flow analysis and macro carbon footprint analysis based on life cycle assessment (LCA).

View Article and Find Full Text PDF

Magnetic iron-based nanoparticles have been found to stimulate algae growth and harvest, repair disintegrated particles and improve stability, and facilitate operation in extreme environments, which help improve the wide application of algal-bacterial technology. Nevertheless, up to now, no literature collected to systematically review the research progress of on the employment of magnetic iron-based nanoparticles in the algal-bacterial system. This review summarizes the special effects (e.

View Article and Find Full Text PDF

The increasing contamination of water systems by antibiotics and heavy metals has become a growing concern. The intimately coupled photocatalysis and biodegradation (ICPB) approach offers a promising strategy for the effective removal of mixed pollutants. Despite some prior research on ICPB applications, the mechanism by which ICPB eliminates mixed pollutants remains unclear.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) regulated by quorum sensing (QS) could directly mediate adhesion between microorganisms and form tight microbial aggregates. Besides, EPS have redox properties, which can facilitate electron transfer for promoting electroactive bacteria. Currently, the applications research on improving wastewater biological treatment performance based on QS regulated EPS have been widely reported, but reviews on the level of QS regulated EPS to enhance EPS function in microbial systems are still lacking.

View Article and Find Full Text PDF

N doping is an essential strategy to prolong electron diffusion length and improve the photovoltaic performance of p-i-n structured perovskite solar devices, but current n-dopants generally suffer from air instability, poor compatibility with perovskites, and the compensation from perovskite intrinsic defects, thus limiting their doping effectiveness. To address these issues, in this work, a new perovskite n-doping strategy is developed by incorporating an air-stable n-dopant (1-ethyl-3-methylimidazolium-2-carboxylate, EMIC) that has no detrimental effects on perovskite crystallinity and morphology. EMIC is soluble in most polar solvents and can be readily introduced into perovskite precursor solutions.

View Article and Find Full Text PDF

In-sensor and near-sensor computing are becoming the next-generation computing paradigm for high-density and low-power sensory processing. To fulfil a high-density and efficient neuromorphic visual system with fully hierarchical emulation of the retina and visual cortex, emerging multimodal neuromorphic devices for multi-stage processing and a fully hardware-implemented system with versatile image processing functions are still lacking and highly desirable. Here we demonstrate an emerging multimodal-multifunctional resistive random-access memory (RRAM) device array based on modified silk fibroin protein (MSFP), exhibiting both optoelectronic RRAM (ORRAM) mode featured by unique negative and positive photoconductance memory and electrical RRAM (ERRAM) mode featured by analogue resistive switching.

View Article and Find Full Text PDF

The integrated photocatalysis and fluidized bed biofilm reactor (FBBR) is an attractive wastewater treatment technique for managing wastewater containing antibiotics. However, the fast recombination of photoinduced charge and low microbial activity limit the degradation and mineralization efficiency for antibiotics. To address this, we attempt to introduce magnetic field (MF) to the integrated system with B-doped BiOCl as the photocatalysts to effectively improve removal and mineralization of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Ultrasonication allows sludge reduction to be performed in situ during wastewater treatment, and the reflux point of the lysed sludge affects this performance. This study investigated the effects of reflux point (anaerobic stage, carbon/nitrogen (C/N) lowest stage, and aerobic stage) on sludge lysis-cryptic growth in an anaerobic/aerobic reactor and variations in the sludge and microbial community. The best reflux point occurred at the lowest C/N ratio stage, and a 50.

View Article and Find Full Text PDF

With the highlighted advantages of 3D printing technology in the field of dental prosthodontics, there is increasing in the numbers of registration applications for additive manufacturing customized dentures. However, there is still a lack of unified analysis in the core elements of process control, the key points of registration and the safety production quality control. Based on the current research status of the industry, the study is intended to clarify confusion and difficulties, deeply analyse the mechanism of the product defects, sort the core elements of process control, then try to establish a systematic evaluation system from product performance research, key process verification, production quality control and the description of registration files, so that it can provide help for practitioners to clarify research direction, establishing quality management system, improving the efficiency of registration and ensuring product quality.

View Article and Find Full Text PDF

As two emerging pollutants of great concern, microplastics (MPs) and antibiotics inevitably cooccur in various aquatic environments and interact with each other, impacting the fate and ecological risks. Aging obviously complicates their interaction and deserves further study. Therefore, the adsorption-desorption behaviors of ciprofloxacin (CIP) onto polystyrene (PS) fragments with various aging extent were investigated, and the key physiochemical properties influencing the interaction and the interaction mechanisms were clarified by redundancy analysis, FTIR and XPS spectra.

View Article and Find Full Text PDF

Background & Aims: Integrin αv (ITGAV, CD51) is regarded as a key component in multiple stages of tumor progression. However, the clinical failure of cilengitide, a specific inhibitor targeting surface CD51, suggests the importance of yet-unknown mechanisms by which CD51 promotes tumor progression.

Methods: In this study, we used several hepatocellular carcinoma (HCC) cell lines and murine hepatoma cell lines.

View Article and Find Full Text PDF

Anaerobic granular sludge (AnGS) has a complex and important internal microbial communication system due to its unique microbial layered structure. As a concentration-dependent communication system between bacterial cells through signal molecules, QS (quorum sensing) is widespread in AnGS and exhibits great potential to regulate microbial behaviors. Therefore, the universal functions of QS in AnGS have been systematically summarized in this paper, including the influence on the metabolic activity, physicochemical properties, and microbial community of AnGS.

View Article and Find Full Text PDF
Article Synopsis
  • Landfill stabilization takes a long time, which is a challenge for cities, but combining micro-aeration and leachate recirculation can speed up organic matter breakdown.
  • The study revealed significant increases in volatile fatty acids (VFAs) and high removal rates of pollutants, with reductions of 80.17% in chemical oxygen demand (COD), 48.30% in total phosphorus (TP), and 48.56% in ammonia nitrogen (NH-N) by the end of the landfill period.
  • This method also boosted populations of helpful bacteria and improved the overall efficiency of waste degradation by enhancing functional microorganisms.
View Article and Find Full Text PDF

Synopsis of recent research by authors named "Zhijun Ren"

  • - Zhijun Ren's research primarily focuses on enhancing anaerobic digestion (AD) processes and wastewater treatment through innovative materials, such as co-doped biochars, which improve microbial interaction and electron transfer efficiency, significantly increasing treatment performance.
  • - He employs machine learning for the optimization of industrial sludge treatment methods, demonstrating the efficacy of various algorithms, and has also examined the application of external stimuli, such as magnetic fields, to improve membrane bioreactor efficiency and mitigate fouling.
  • - Ren's work extends into the exploration of algal-bacterial symbiosis systems for sustainable wastewater treatment, emphasizing mechanisms for pollutant removal and proposing novel integrated processes to enhance treatment effectiveness, while also addressing the carbon footprint of wastewater treatment technologies.

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5n37aj5d1cokvj25k6r0ijgonvvvce8n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once