FUS-mediated alternative splicing and METTL3-regulated RNA methylation play crucial roles in RNA processing. The purpose of this study was to investigate the interactive roles of FUS and METTL3 in gastric cancer (GC) progression. RNA sequencing data were obtained from the TCGA-STAD dataset.
View Article and Find Full Text PDFThe immunosuppressive residual tumor microenvironment (IRTM) is a key factor in the high recurrence and metastasis rates of hepatocellular carcinoma (HCC) after microwave ablation (MWA). Cholesterol-rich tumor fragments significantly contribute to IRTM deterioration. This study developed a cholesterol-targeted catalytic hydrogel, DA-COD-OD-HCS, to enhance the synergy between MWA and immune checkpoint inhibitors (ICIs) for HCC treatment.
View Article and Find Full Text PDFIn this study, we identified a new mycotombus-like mycovirus from the phytopathogenic fungus Nigrospora oryzae, which was tentatively designated as "Nigrospora oryzae umbra-like virus 1" (NoULV1). The complete genome of NoULV1 is 3,381 nt long, containing two open reading frames (ORF1 and ORF2). ORF1 encodes a hypothetical protein with an unknown function, while ORF2 encodes an RNA-dependent RNA polymerase (RdRp) with a conserved RdRp domain containing a metal-binding 'GDN' triplet in motif C, which is distinct from the 'GDD' motif found in most + ssRNA mycoviruses.
View Article and Find Full Text PDFHere, we identified a new mycovirus infecting the phytopathogenic fungus Nigrospora oryzae, which we have designated "Nigrospora oryzae partitivirus 2" (NoPV2). The genome of NoPV2 consists of two dsRNA segments (dsRNA 1 and dsRNA 2), measuring 1771 and 1440 bp in length, respectively. dsRNA 1 and dsRNA 2 each contain a single open reading frame (ORF) that encodes the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP), respectively.
View Article and Find Full Text PDFRhizosphere interactions from plant-soil-microbiome occur dynamically all the time in the "black microzone" underground, where we can't see intuitively. Rhizosphere metabolites including root exudates and microbial metabolites act as various chemical signalings involving in rhizosphere interactions, and play vital roles on plant growth, development, disease suppression and resistance to stress conditions as well as proper soil health. Although rhizosphere metabolites are a mixture from plant roots and soil microbes, they often are discussed alone.
View Article and Find Full Text PDFCirrhosis, a chronic liver disease, significantly impairs wound healing due to complex alterations in physiology, including compromised immune function, poor nutritional status and altered blood flow. This prospective observational cohort study aimed to evaluate the effectiveness of the multidimensional combination therapy approach in enhancing wound healing among patients diagnosed with cirrhosis. The study was conducted from February to November 2023 in Shanghai, China, including 248 patients with cirrhosis experiencing poor wound healing.
View Article and Find Full Text PDFLipiodol chemotherapeutic emulsions remain one of the main choices for the treatment of unresectable hepatocellular carcinoma (HCC) via transarterial chemoembolization (TACE). However, the limited stability of Lipiodol chemotherapeutic emulsions would lead to rapid drug diffusion, which would reduce the therapeutic benefit and cause systemic toxicity of administrated chemotherapeutics. Therefore, the development of enhanced Lipiodol-based formulations is of great significance to enable effective and safe TACE treatment.
View Article and Find Full Text PDFTumor hypoxia and acidity, two general features of solid tumors, are known to have negative effect on cancer immunotherapy by directly causing dysfunction of effector immune cells and promoting suppressive immune cells inside tumors. Herein, a multifunctional colloidosomal microreactor is constructed by encapsulating catalase within calcium carbonate (CaCO ) nanoparticle-assembled colloidosomes (abbreviated as CaP CSs) via the classic double emulsion method. The yielded CCaP CSs exhibit well-retained proton-scavenging and hydrogen peroxide decomposition performances and can thus neutralize tumor acidity, attenuate tumor hypoxia, and suppress lactate production upon intratumoral administration.
View Article and Find Full Text PDFBackground: Tropical water lily is an aquatic plant with high ornamental value, but it cannot overwinter naturally at high latitudes. The temperature drop has become a key factor restricting the development and promotion of the industry.
Results: The responses of Nymphaea lotus and Nymphaea rubra to cold stress were analyzed from the perspective of physiology and transcriptomics.
Considering the huge cost and long test periods required for new drug development, repurposing drugs that have already been applied in the clinic as new cancer treatment candidates represents an attractive alternative. Disulfiram (DSF) was originally used to treat alcoholism and has proven to have anticancer effects with the coadministration of copper ions (Cu). However, the limited water-solubility of DSF and systemic toxicity induced by exogenous Cu hinder its practical application.
View Article and Find Full Text PDFFront Environ Sci Eng
September 2022
The COVID-19 pandemic remains ever prevalent and afflicting-partially because one of its transmission pathways is aerosol. With the widely used central air conditioning systems worldwide, indoor virus aerosols can rapidly migrate, thus resulting in rapid infection transmission. It is therefore important to install microbial aerosol treatment units in the air conditioning systems, and we herein investigated the possibility of combining such filtration with UV irradiation to address virus aerosols.
View Article and Find Full Text PDFMicrowave ablation (MWA) as a local tumor ablation strategy suffers from posttreatment tumor recurrence. Development of adjuvant biomaterials to potentiate MWA is therefore of practical significance. Here, the high concentration of Ca fixed by alginate as Ca-surplus alginate hydrogel shows enhanced heating efficiency and restricted heating zone under microwave exposure.
View Article and Find Full Text PDFFerroptosis is a recently identified regulated cell death pathway featured in iron prompted lipid peroxidation inside cells and found to be an effective approach to suppress tumor growth. Motived by the high efficacy of ferrous ions (Fe) in initiating intracellular lipid peroxidation via the Fenton reaction, this study herein prepares a pH-responsive Fe delivery nanocarrier by coating calcium carbonate (CaCO) nanoparticles with a metal-polyphenol coordination polymer composed of gallic acid (GA) and Fe. Together with simultaneous encapsulation of succinic acid conjugated cisplatin prodrugs (Pt(IV)-SA) and Fe, the yielded nanoparticles, coined as CaCO, are synthesized and exhibit uniform hollow structure.
View Article and Find Full Text PDFThe limited penetration depth of external excitation light would remarkably impair the therapeutic efficacy of photodynamic therapy (PDT) and its clinical utilization. Herein, we engineered bioluminescent bacteria by transforming attenuated Salmonella typhimurium strain ΔppGpp (S.T.
View Article and Find Full Text PDFRelieving tumor hypoxia has recently been found to be a promising approach to reverse tumor immunosuppression and thus enhance the treatment outcomes of diverse cancer treatments. Herein, we prepared a type of fluorinated covalent conjugate polymers (COPs) with sonosensitizer meso-5, 10, 15, 20-tetra (4-hydroxylphenyl) porphyrin (THPP) and perfluorosebacic acid (PFSEA) as cross-linkers, yielding THPP-COPs with efficient sonodynamic efficacy and loading capacity towards perfluoro-15-crown-5-ether (PFCE), a model perfluorocarbon molecule. Upon intratumoral injection, such PFCE@THPP-COPs could not only attenuate tumor hypoxia, but also exhibit the most effective suppression effect on tumor growth in the presence of ultrasound exposure by inducing immunogenic cell death of cancer cells.
View Article and Find Full Text PDFRadiotherapy is widely exploited for the treatment of a large range of cancers in clinic, but its therapeutic effectiveness is seriously crippled by the tumor immunosuppression, mainly driven by the altered metabolism of cancer cells. Here, a pH-responsive nanomedicine is prepared by coating calcium carbonate (CaCO ) nanoparticles with 4-phenylimidazole (4PI), an inhibitor against indoleamine 2,3-dioxygenase 1 (IDO-1), together with zinc ions via the coordination reaction, aiming at reinforcing the treatment outcome of radiotherapy. The obtained pH-responsive nanomedicine, coined as acidity-IDO1-modulation nanoparticles (AIM NPs), is able to instantly neutralize protons, and release 4PI to suppress the IDO1-mediated production of kynurenine (Kyn) upon tumor accumulation.
View Article and Find Full Text PDFRadiofrequency ablation (RFA) is clinically adopted to destruct solid tumors, but is often incapable of completely ablating large tumors and those with multiple metastatic sites. Here we develop a CaCO-assisted double emulsion method to encapsulate lipoxidase and hemin with poly(lactic-co-glycolic acid) (PLGA) to enhance RFA. We show the HLCaP nanoreactors (NRs) with pH-dependent catalytic capacity can continuously produce cytotoxic lipid radicals via the lipid peroxidation chain reaction using cancer cell debris as the fuel.
View Article and Find Full Text PDFIntrauterine adhesion (IUA) is one of the most prevalent reproductive system diseases in females. MicroRNAs (miRNAs) are reported to be master regulators in a variety of diseases, including IUA, but the role of microRNA-543 (miR-543) in IUA remains to be elucidated. In this study, we observed that miR-543 was downregulated in transforming growth factor-beta (TGF-β)-treated endometrial stromal cells (ESCs).
View Article and Find Full Text PDFDue to the negative roles of tumor microenvironment (TME) in compromising therapeutic responses of various cancer therapies, it is expected that modulation of TME may be able to enhance the therapeutic responses during cancer treatment. Herein, we develop a concise strategy to prepare pH-responsive nanoparticles via the CaCO-assisted double emulsion method, thereby enabling effective co-encapsulation of both doxorubicin (DOX), an immunogenic cell death (ICD) inducer, and alkylated NLG919 (aNLG919), an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1). The obtained DOX/aNLG919-loaded CaCO nanoparticles (DNCaNPs) are able to cause effective ICD of cancer cells and at the same time restrict the production of immunosuppressive kynurenine by inhibiting IDO1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2021
To overcome water instability and low photocatalytic activity of lead-free halide perovskite for the degradation of organic dyes, we report a novel photocatalyst of lead-free halide perovskite with Na incorporation and employ it for the photocatalytic degradation of organic dyes in water solution under visible light irradiation. The main purpose of this work is to confirm the feasibility of lead-free halide perovskite with Na incorporation for improving the photocatalytic efficiency and recyclability in water solution and further to explore the mechanism behind the enhancement of photocatalytic performance after Na incorporation. The results show that CsAgNaInCl can increase the dye degradation rate by at least 50% than the lead-free halide perovskite (CsAgInCl) and the photocatalyst of Ag substituted by Na (CsNaInCl).
View Article and Find Full Text PDFThe imbalance of SUMOylation is related to different cancers, including gastric cancer (GC). Ginkgolic acid (GA) inhibits the growth and invasion of many cancer cells, and it has been reported to restrain SUMOylation. However, the role of GA in GC and whether it functions through SUMOylation remains to be clarified.
View Article and Find Full Text PDFBackground: Cervical cancer (CC) is the second serious health threat in women worldwide. LncRNA ( antisense RNA 1) has been observed to abnormally express in human cancers. However, the expression pattern, clinical significance and molecular mechanism of ZFAS1 have not been thoroughly studied in CC.
View Article and Find Full Text PDFAlthough estrogen has crucial functions for endometrium growth, the specific dose and underlying molecular mechanism in intrauterine adhesion (IUA) remain unclear. In this study, we aimed to investigate the effects of estrogen on epithelial-mesenchymal transition (EMT) in normal and fibrotic endometrium, and the role of estrogen and Wnt/β-catenin signaling in the formation of endometrial fibrosis. CCK-8 and immunofluorescence assay were performed to access the proliferation of different concentrations of estrogen on normal human endometrial epithelial cells (hEECs).
View Article and Find Full Text PDF