Dendritic zinc (Zn) electrodeposition presents a significant obstacle to the large-scale development of rechargeable zinc-ion batteries. To mitigate this challenge, various interfacial strategies have been employed. However, these approaches often involve the incorporation of foreign materials onto Zn anode surface, resulting in increased material costs and processing complexities, not to mention the compromised interface endurability due to structural and compositional heterogeneity.
View Article and Find Full Text PDFCommercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.
View Article and Find Full Text PDFLithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.
View Article and Find Full Text PDFHybrid materials with a rational organic-inorganic configuration can offer multifunctionality and superior properties. This principle is crucial but challenging to be applied in designing the solid electrolyte interphase (SEI) on lithium metal anodes (LMAs), as it substantially affects Li transport from the electrolyte to the anode. Here, an artificial SEI with an ultrahigh fluorine content (as high as 70.
View Article and Find Full Text PDFReactive negative electrodes like lithium (Li) suffer serious chemical and electrochemical corrosion by electrolytes during battery storage and operation, resulting in rapidly deteriorated cyclability and short lifespans of batteries. Li corrosion supposedly relates to the features of solid-electrolyte-interphase (SEI). Herein, we quantitatively monitor the Li corrosion and SEI progression (e.
View Article and Find Full Text PDFPotassium metal battery is an appealing candidate for future energy storage. However, its application is plagued by the notorious dendrite proliferation at the anode side, which entails the formation of vulnerable solid electrolyte interphase (SEI) and non-uniform potassium deposition on the current collector. Here, this work reports a dual-modification design of aluminum current collector to render dendrite-free potassium anodes with favorable reversibility.
View Article and Find Full Text PDFSolid electrolyte interphase (SEI) has received considerable attention due to its vital role in stabilizing Li anode. However, native and many artificial SEIs often suffer from cracking and fragmentation under dendrite impact or long-term repeated volume variation, causing capacity decay. Herein, a mechanically interlocked network (MIN) was innovatively designed as interfacial layer to protect Li anode by incorporating the unique energy dissipation capability, which helps Li anode survive repeated volume variation during long-term cycling.
View Article and Find Full Text PDFSulfide electrolytes promise superior ion conduction in all-solid-state lithium (Li) metal batteries, while suffering harsh hurdles including interior dendrite growth and instability against Li and moist air. A prerequisite for solving such issues is to uncover the nature of the Li/sulfide interface. Herein, air-stable LiSnS (LSS) as a prototypical sulfide electrolyte is selected to visualize the dynamic evolution and failure of the Li/sulfide interface by cryo-electron microscopy.
View Article and Find Full Text PDFThe free transport of anions in a Li metal battery can cause multiple issues, including a high anion transference number, space charge, and concentration polarization, eventually leading to uncontrolled dendrite formation and decreased performance. Herein, we report an anion-anchoring nano-CaCO (NC) coating derived from eggshell biowaste for stabilizing Li metal anodes. As the adsorption of local TFSI anions onto the NC adsorbent can undermine the anion concentration gradient and promote rapid Li-ion diffusion, it can effectively inhibit the proliferation of Li dendrites assisted by the NC coating.
View Article and Find Full Text PDFThe lithium metal anode (LMA) is regarded as one of the most promising candidates for high-energy Li-ion batteries. However, the naturally formed solid electrolyte interface (SEI) is unsatisfied, which would cause continuous dendrite growth and thus prevent the practical application of the LMA. Herein, a stable electrolytic carbon-based hybrid (ECH) artificial SEI is constructed on the LMA via the in-situ electrodeposition of an electrolyte sovlent at ultrahigh voltage.
View Article and Find Full Text PDFThe proliferation of lithium (Li) dendrites stemming from uncontrollable Li deposition seriously limits the practical application of Li metal batteries. The regulation of uniform Li deposition is thus a prerequisite for promoting a stable Li metal anode. Herein, a commercial lithiophilic skeleton of soybean protein fiber (SPF) is introduced to homogenize the Li-ion flux and induce the biomimetic Li growth behavior.
View Article and Find Full Text PDFLithium (Li)-metal batteries are one of the most promising candidates for the next-generation energy storage devices due to their ultrahigh theoretical capacity. The realistic development of a Li metal battery is greatly impeded by the uncontrollable dendrite proliferation upon the chemically active metallic Li. To visualize the micromorphology or even the atomic structure of Li deposits is undoubtedly crucial, while imaging the sensitive Li still faces a huge challenge technically.
View Article and Find Full Text PDFThe application of solid polymer electrolytes (SPEs) is still inherently limited by the unstable lithium (Li)/electrolyte interface, despite the advantages of security, flexibility, and workability of SPEs. Herein, the Li/electrolyte interface is modified by introducing Li S additive to harvest stable all-solid-state lithium metal batteries (LMBs). Cryo-transmission electron microscopy (cryo-TEM) results demonstrate a mosaic interface between poly(ethylene oxide) (PEO) electrolytes and Li metal anodes, in which abundant crystalline grains of Li, Li O, LiOH, and Li CO are randomly distributed.
View Article and Find Full Text PDFThe lithium metal anode (LMA) is considered as a promising star for next-generation high-energy density batteries but is still hampered by the severe growth of uncontrollable lithium dendrites. Here, we design "spansules" made of NaMg(Mn)F@C core@shell microstructures as the matrix for the LMA, which can offer a long-lasting release of functional ions into the electrolyte. By the assistance of cryogenic transmission electron microscopy, we reveal that an in situ-formed metal layer and a unique LiF-involved bilayer structure on the Li/electrolyte interface would be beneficial for effectively suppressing the growth of lithium dendrites.
View Article and Find Full Text PDFMetallic lithium anodes are highly promising for revolutionizing current rechargeable batteries because of their ultrahigh energy density. However, the application of lithium metal batteries is considerably impeded by lithium dendrite growth. Here, a biomacromolecule matrix obtained from the natural membrane of eggshell is introduced to control lithium growth and the mechanism is motivated by how living organisms regulate the orientation of inorganic crystals in biomineralization.
View Article and Find Full Text PDFElectrode materials that act through the electrochemical conversion mechanism, such as metal selenides, have been considered as promising anode candidates for lithium-ion batteries (LIBs), although their fast capacity attenuation and inadequate electrical conductivity are impeding their practical application. In this work, these issues are addressed through the efficient fabrication of MnSe nanoparticles inside porous carbon hierarchical architectures for evaluation as anode materials for LIBs. Density functional theory simulations indicate that there is a completely irreversible phase transformation during the initial cycle, and the high structural reversibility of β-MnSe provides a low energy barrier for the diffusion of lithium ions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
With multiple properties, green carbon nanomaterials with high specific surface area have become extensively attractive as energy storage devices with environmental-friendly features. The primary synthesis attempts were based on alkalis activation, which, however, faced the dilemma of low utilization rate of carbon sources. Herein, the green carbon with ultrahigh surface area (up to 3560 m/g) was prepared by the KOH-assisted biomass carbonization.
View Article and Find Full Text PDF