Publications by authors named "Zhijie Dong"

Article Synopsis
  • Photoacoustic computed tomography (PACT) is a technique that combines with ultrasound imaging to study blood flow and oxygen levels in the deep brain of small animals.
  • A new device called 3D-PAULM merges these technologies for non-invasive imaging capabilities, allowing researchers to study brain functions while preserving the integrity of the skull and scalp.
  • Using 3D-PAULM, researchers were able to assess the effects of ischemic stroke on mouse brains by measuring key parameters like blood perfusion, oxygen saturation, and flow velocity, which can help in understanding brain disorders.
View Article and Find Full Text PDF

This paper reports a new water-immersible single-axis scanning mirror using hybrid polymer and elastomer hinges to achieve both high scanning resonance frequencies and large tilting angles for high-speed and wide-field 3D ultrasound imaging. To demonstrate the concept, a prototype scanning mirror is designed, fabricated, and characterized. The fast- and slow-scanning were achieved by integrating stiff BoPET (biaxially oriented polyethylene terephthalate) and soft elastomer PDMS (Polydimethylsiloxane) hinges, respectively.

View Article and Find Full Text PDF

The use of lanthanide luminescence has advanced the field of remote temperature sensing. Luminescence intensity ratio methods relying on emission from two thermally coupled energy levels are popular but suffer from a limited temperature range. Here, we present a versatile luminescent thermometer: Ba(Sr)FBr(Cl):Sm.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrasound vascular imaging (UVI) is important for monitoring health and identifying diseases, and transitioning from 2D to 3D imaging improves visual reliability.
  • The study introduces a method called spatial-temporal similarity weighting (St-SW) to tackle issues of high sidelobe artifacts and low signal-to-noise ratio (SNR) in ultrafast row-column array (RCA) imaging.
  • Results from simulations and experiments showed that St-SW significantly reduced sidelobe artifacts and enhanced image quality, improving contrast-to-noise ratios in various imaging scenarios compared to existing techniques.
View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) enables deep tissue microvascular imaging by localizing and tracking intravenously injected microbubbles circulating in the bloodstream. However, conventional localization techniques require spatially isolated microbubbles, resulting in prolonged imaging time to obtain detailed microvascular maps. Here, we introduce LOcalization with Context Awareness (LOCA)-ULM, a deep learning-based microbubble simulation and localization pipeline designed to enhance localization performance in high microbubble concentrations.

View Article and Find Full Text PDF

Acoustic radiation force (ARF)-based shear wave elastography (SWE) is a clinically available ultrasound imaging mode that noninvasively and quantitatively measures tissue stiffness. Current implementations of ARF-SWE are largely limited to 2-D imaging, which does not provide a robust estimation of heterogeneous tissue mechanical properties. Existing 3-D ARF-SWE solutions that are clinically available are based on wobbler probes, which cannot provide true 3-D shear wave motion detection.

View Article and Find Full Text PDF

Increasing evidence has suggested a link between cerebrovascular disease and the cognitive impairment associated with Alzheimer's disease. However, detailed descriptions of microvascular changes across brain regions and how they relate to other more traditional pathology have been lacking. Additionally, the efforts to elucidate the interplay between cerebral microvascular function and Alzheimer's disease progression are complicated by the necessity of probing deep-brain structures since early-stage Alzheimer's disease typically involves hippocampal pathology.

View Article and Find Full Text PDF

Cuttage is the preferred approach for rapid propagation of many species including tea plant (Camellia sinensis). Leaf serves as a key part of nodal cutting, but there is a lack of systematic research on its role in the cutting process. In this study, 24 tea cultivars were employed to prove the necessity of leaf and light during cuttage.

View Article and Find Full Text PDF

Super-resolution ultrasound microvessel imaging based on ultrasound localization microscopy (ULM) is an emerging imaging modality that is capable of resolving micrometer-scaled vessels deep into tissue. In practice, ULM is limited by the need for contrast injection, long data acquisition, and computationally expensive postprocessing times. In this study, we present a contrast-free super-resolution power Doppler (CS-PD) technique that uses deep networks to achieve super-resolution with short data acquisition.

View Article and Find Full Text PDF

Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO), US imaging can probe the blood flow based on the Doppler effect.

View Article and Find Full Text PDF

Three-dimensional ultrasound imaging has many advantages over 2-D imaging such as more comprehensive tissue evaluation and less operator dependence. However, developing a low-cost and accessible 3-D ultrasound solution with high volume rate and imaging quality remains a challenging task. Recently, we proposed a 3-D ultrasound imaging technique: fast acoustic steering via tilting electromechanical reflectors (FASTER), which uses a fast-tilting acoustic reflector to steer ultrafast plane waves elevationally to achieve high-volume-rate 3-D imaging with conventional 1-D transducers.

View Article and Find Full Text PDF

Ultrafast ultrasound imaging is essential for advanced ultrasound imaging techniques such as ultrasound localization microscopy (ULM) and functional ultrasound (fUS). Current ultrafast ultrasound imaging is challenged by the ultrahigh data bandwidth associated with the radio frequency (RF) signal, and by the latency of the computationally expensive beamforming process. As such, continuous ultrafast data acquisition and beamforming remain elusive with existing software beamformers based on CPUs or GPUs.

View Article and Find Full Text PDF

Ultrasound localization microscopy is a super-resolution imaging technique that exploits the unique characteristics of contrast microbubbles to side-step the fundamental trade-off between imaging resolution and penetration depth. However, the conventional reconstruction technique is confined to low microbubble concentrations to avoid localization and tracking errors. Several research groups have introduced sparsity- and deep learning-based approaches to overcome this constraint to extract useful vascular structural information from overlapping microbubble signals, but these solutions have not been demonstrated to produce blood flow velocity maps of the microcirculation.

View Article and Find Full Text PDF

3-D ultrasound imaging has many advantages over 2-D imaging such as more comprehensive tissue evaluation and less operator dependence. Although many 3-D ultrasound imaging techniques have been developed in the last several decades, a low-cost and accessible solution with high imaging volume rate and imaging quality remains elusive. Recently we proposed a new, high volume rate 3-D ultrasound imaging technique: Fast Acoustic Steering via Tilting Electromechanical Reflectors (FASTER), which uses a water-immersible and fast-tilting acoustic reflector to steer ultrafast plane waves in the elevational direction to achieve high volume rate 3-D ultrasound imaging with conventional 1-D array transducers.

View Article and Find Full Text PDF

is a widespread foodborne pathogen contaminating foods during their production or processing stages. Fresh meat is susceptible to such contamination if it is not properly preserved. Our study was conducted to reveal the level of contamination and prevalence of spp.

View Article and Find Full Text PDF

Context: With the rapidly aging population globally, osteoporosis (OP) has become a major public health problem, and fracture is a common complication of OP. Older adults, especially postmenopausal women, have a higher incidence of OP.

Objective: The study intended to analyze the clinical information, epidemiological characteristics, treatments, and follow-up results of patients with osteoporotic fractures (OPFs) in adults over 65 years old, to provide data support for the prevention, treatment, and use of OPF focus groups in clinical practice.

View Article and Find Full Text PDF

Introduction: Promoting crop growth and regulating denitrification process are two main ways to reduce soil NO emissions in agricultural systems. However, how biochar and arbuscular mycorrhizal fungi (AMF) can regulate crop growth and denitrification in soils with different phosphorus (P) supplies to influence NO emission remains largely unknown.

Method: Here, an eight-week greenhouse and one-year field experiments biochar and/or AMF (only in greenhouse experiment) additions under low and high P environments were conducted to characterize the effects on wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Deep Neural Networks (DNN) form a powerful deep learning model that can process unprecedented volumes of data. The hyperparameters of DNN have a significant influence on its prediction performance. Evolutionary algorithms (EAs) form a heuristic-based approach that provides an opportunity to optimize deep learning models to obtain good performance.

View Article and Find Full Text PDF

Objectives: Medial patellofemoral ligament (MPFL) reconstruction is an important surgical therapy for recurrent patellar dislocation. However, few studies have focused on exercise therapy after MPFL reconstruction. Therefore, the first purpose was to compare the active and traditional postoperative exercise therapies on the recovery of knee joint function and reduction of muscle atrophy after MPFL reconstruction, and the second purpose was to compare the active and traditional postoperative exercise therapies on the patellar stability after MPFL reconstruction.

View Article and Find Full Text PDF

Biochar and nitrogen (N) fertilizer application can increase soil carbon sequestration and enhance soil nutrient cycling. However, few studies have systematically explored the effects of the long-term application of biochar and N fertilizer on soil multifunctionality and characterized its driving factors. Based on an 8-year biochar paddy-field experiment in anthropogenic alluvial alkaline soil in northwest China, we measured eleven soil functions associated with soil carbon sequestration and nutrient cycling and four potential factors (soil bacterial and fungal richness, pH, and aggregates) governing soil functions to investigate the effects of three biochar rates (C0, no biochar; C1, 4.

View Article and Find Full Text PDF

. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. .

View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) based on microbubble (MB) localization was recently introduced to overcome the resolution limit of conventional ultrasound. However, ULM is currently challenged by the requirement for long data acquisition times to accumulate adequate MB events to fully reconstruct vasculature. In this study, we present a curvelet transform-based sparsity promoting (CTSP) algorithm that improves ULM imaging speed by recovering missing MB localization signal from data with very short acquisition times.

View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) is an emerging vascular imaging technique that overcomes the resolution-penetration compromise of ultrasound imaging. Accurate and robust microbubble (MB) localization is essential for successful ULM. In this study, we present a deep learning (DL)-based localization technique that uses both Field-II simulation and in vivo chicken embryo chorioallantoic membrane (CAM) data for training.

View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) demonstrates great potential for visualization of tissue microvasculature at depth with high spatial resolution. The success of ULM heavily depends on robust localization of isolated microbubbles (MBs), which can be challenging in vivo especially within larger vessels where MBs can overlap and cluster close together. While MB dilution alleviates the issue of MB overlap to a certain extent, it drastically increases the data acquisition time needed for MBs to populate the microvasculature, which is already on the order of several minutes using recommended MB concentrations.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: