Modeling of Multi-Electrode Arrays used in neural stimulation can be computationally challenging since it may involve incredibly dense circuits with millions of interconnected resistors, representing current pathways in an electrolyte (resistance matrix), coupled to nonlinear circuits of the stimulating pixels themselves. Here, we present a method for accelerating the modeling of such circuits while minimizing the error of a simplified simulation by using a sparse plus low-rank approximation of the resistance matrix. Specifically, we prove that thresholding of the resistance matrix elements enables its sparsification with minimized error.
View Article and Find Full Text PDFRetinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue.
View Article and Find Full Text PDFObjective: High-resolution retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables an increase in prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue.
View Article and Find Full Text PDFIn patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
October 2023
Retinal implants have been developed and implanted to restore vision from outer retinal degeneration, but their performance is still limited due to the poor spatial resolution. To improve the localization of stimulation, microelectrodes in various three-dimensional (3D) shapes have been investigated. In particular, computational simulation is crucial for optimizing the performance of a novel microelectrode design before actual fabrication.
View Article and Find Full Text PDFPhotovoltaic subretinal prosthesis (PRIMA) enables restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution limited by the 100 μm pixel size. Since decreasing the pixel size below 75 μm in the current bipolar geometry is impossible, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 9 months post-implantation in aged rats.
View Article and Find Full Text PDFLocalized stimulation of the inner retinal neurons for high-acuity prosthetic vision requires small pixels and minimal crosstalk from the neighboring electrodes. Local return electrodes within each pixel limit the crosstalk, but they over-constrain the electric field, thus precluding the efficient stimulation with subretinal pixels smaller than 55 μm. Here we demonstrate a high-resolution prosthetic vision based on a novel design of a photovoltaic array, where field confinement is achieved dynamically, leveraging the adjustable conductivity of the diodes under forward bias to turn the designated pixels into transient returns.
View Article and Find Full Text PDFPRIMA, the photovoltaic subretinal prosthesis, restores central vision in patients blinded by atrophic age-related macular degeneration (AMD), with a resolution closely matching the 100m pixel size of the implant. Improvement in resolution requires smaller pixels, but the resultant electric field may not provide sufficient stimulation strength in the inner nuclear layer (INL) or may lead to excessive crosstalk between neighboring electrodes, resulting in low contrast stimulation patterns. We study the approaches to electric field shaping in the retina for prosthetic vision with higher resolution and improved contrast.
View Article and Find Full Text PDFRetinal prostheses aim at restoring sight in patients with retinal degeneration by electrically stimulating the inner retinal neurons. Clinical trials with patients blinded by atrophic age-related macular degeneration using the PRIMA subretinal implant, a 2 × 2 mm array of 100m-wide photovoltaic pixels, have demonstrated a prosthetic visual acuity closely matching the pixel size. Further improvement in resolution requires smaller pixels, which, with the current bipolar design, necessitates more intense stimulation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Hydrocephalus patients suffer from an abnormal buildup of cerebrospinal fluid (CSF) in their ventricles, and there is currently no known way to cure hydrocephalus. The most prevalent treatment for managing hydrocephalus is to implant a ventriculoperitoneal shunt, which diverts excess CSF out of the brain. However, shunts are prone to failure, resulting in vague symptoms.
View Article and Find Full Text PDFTo restore central vision in patients with atrophic age-related macular degeneration, we replace the lost photoreceptors with photovoltaic pixels, which convert light into current and stimulate the secondary retinal neurons. Clinical trials demonstrated prosthetic acuity closely matching the sampling limit of the 100m pixels, and hence smaller pixels are required for improving visual acuity. However, with smaller flat bipolar pixels, the electric field penetration depth and the photodiode responsivity significantly decrease, making the device inefficient.
View Article and Find Full Text PDFPhotoreceptors initiate vision by converting photons to electrical activity. The onset of the phototransduction cascade is marked by the isomerization of photopigments upon light capture. We revealed that the onset of phototransduction is accompanied by a rapid (<5 ms), nanometer-scale electromechanical deformation in individual human cone photoreceptors.
View Article and Find Full Text PDFObjective: To restore sight in atrophic age-related macular degeneration, the lost photoreceptors can be replaced with electronic implants, which replicate their two major functions: (1) converting light into an electric signal, and (2) transferring visual information to the secondary neurons in the retinal neural network—the bipolar cells (BC). We study the selectivity of BC activation by subretinal implants and dynamics of their response to pulsatile waveforms in order to optimize the electrical stimulation scheme such that retinal signal processing with 'electronic photoreceptors' remains as close to natural as possible.
Approach: A multicompartmental model of a BC was implemented to simulate responses of the voltage-gated calcium channels and subsequent synaptic vesicle release under continuous and pulsatile stimuli.
Objective: Avoidance of the adverse electrochemical reactions at the electrode-electrolyte interface defines the voltage safety window and limits the charge injection capacity (CIC) of an electrode material. For an electrode that is not ideally capacitive, the CIC depends on the waveform of the stimulus. We study the modeling of the charge injection dynamics to optimize the waveforms for efficient neural stimulation within the electrochemical safety limits.
View Article and Find Full Text PDF