Norovirus (NoV) is the primary cause of acute gastroenteritis (AGE) on a global scale. Numerous studies have demonstrated the immense potential of wastewater surveillance in monitoring the prevalence and spread of NoV within communities. This study employed a one-step reverse transcription-quantitative PCR to quantify NoV GI/GII in wastewater samples (n = 2574), which were collected once or twice a week from 38 wastewater treatment plants from March 2023 to February 2024 in Shenzhen.
View Article and Find Full Text PDFIntroduction: The emergence of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineage, BA.2.86, has sparked global public health concerns for its potential heightened transmissibility and immune evasion.
View Article and Find Full Text PDFObjective: To understand the prevalence, genetic characteristics and drug resistance features of Salmonella Kentucky ST314 in Shenzhen.
Methods: Whole genome sequencing of 14 strains of Salmonella Kentucky ST314 collected from 2010-2021 by the Foodborne Disease Surveillance Network of Shenzhen Center for Disease Control and Prevention for phylogenetic evolutionary analysis, drug resistance gene and plasmid detection; drug susceptibility experiments were performed by micro-broth dilution method.
Results: A total of 57 strains of Salmonella Kentucky were collected from the foodborne disease surveillance network, 14 of which were ST314.
The prolonged course of the COVID-19 pandemic necessitates sustained surveillance of emerging variants. This study aimed to develop a multiplex real-time polymerase chain reaction (rt-PCR) suitable for the real-time tracking of Omicron subvariants in clinical and wastewater samples. Plasmids containing variant-specific mutations were used to develop a MeltArray assay.
View Article and Find Full Text PDF