Publications by authors named "Zhijia Ci"

Coastal seas contribute the majority of human methylmercury (MeHg) exposure via marine fisheries. The terrestrial area surrounding the Bohai Sea and Yellow Sea (BS and YS) is one of the mercury (Hg) emission "hot spots" in the world, resulting in high concentrations of Hg in BS and YS seawater in comparison to other marine systems. However, comparable or even lower Hg levels were detected in seafood from the BS and YS than other coastal regions around the word, suggesting a low system bioaccumulation of Hg.

View Article and Find Full Text PDF

The sea surface microlayer (SML) is the uppermost ∼1000 μm of the surface of the ocean. With distinct physicochemical properties and position relative to the adjacent subsurface waters (SSWs), the ubiquitous distribution and high dynamics of the SML greatly regulate the global air-sea gas exchange and biogeochemistry. Mercury (Hg) redox chemistry in surface seawaters and air-sea exchange of gaseous Hg (mainly Hg(0)) fundamentally control the global oceanic Hg cycle.

View Article and Find Full Text PDF

The coastal streams (CSs) and sewage outfalls (SOs) are widely distributed and direct anthropogenic stress on global coastal ecosystems. However, the CS/SO-associated mercury (Hg) discharge, pollution and cycle in nearshore environment are less quantified. Here, we report that total Hg (THg) and methylmercury (MMHg) concentrations in waters of CSs (n = 8) and SOs (n = 15) of the northern China were ∼10 to 10 times of coastal surface waters and 10 to 10 times of major rivers in China and other regions.

View Article and Find Full Text PDF

Gaseous mercury (mainly elemental mercury, Hg(0)) exchange between air and Earth's surfaces is one of the most critical fluxes governing global Hg cycle. As an important and unique part of intertidal ecosystem, tidal flat is characterized by periodic inundation and exposure due to tidal cycle, generating varying hydrological, photochemical and biogeochemical processes. However, quantitative and mechanistic understanding of Hg(0) dynamics between air and exceptionally dynamic tide flats has remained limited to date.

View Article and Find Full Text PDF

Coastal ecosystem is an important zone of mercury (Hg) storage and hotspot of neurotoxic methylmercury (MMHg) production and bioaccumulation. The releases of Hg from coastal aquifer or subterranean estuary (STE) via submarine groundwater discharge (SGD) to coastal waters provide an important source of Hg from land to seas. However, the transport and biogeochemical transformation of Hg in STEs are less quantified.

View Article and Find Full Text PDF

Increasing evidence shows that warming is driving Hg release from the cryosphere. However, Hg cycling in thawing permafrost is less understood to date. Here we show that permafrost thaw dominantly supplied no-run thermokarst ponds by permafrost melt waters (PMWs) with high concentration of photoreducible Hg (PRHg) and subsequently controlled Hg(0) emissions in the Tibetan Plateau.

View Article and Find Full Text PDF

Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated.

View Article and Find Full Text PDF

Two oceanographic cruises were carried out in the East China Sea (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in air and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) flux. The GEM concentration was lower in summer (1.

View Article and Find Full Text PDF

The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment.

View Article and Find Full Text PDF

We performed incubation experiments using seawaters from representative marine environments of the eastern Asian seas to determine the mercury (Hg) available for photoreduction (Hgr(II)), to investigate the Hg redox reaction kinetics, and to explore the effect of environmental factors and water chemistry on the Hg redox chemistry. Results show that Hgr(II) accounted for a considerable fraction of total Hg (THg) (%Hgr(II)/THg: 24.90 ± 10.

View Article and Find Full Text PDF

The Yellow Sea in East Asia receives great Hg input from regional emissions. However, Hg cycling in this marine system is poorly investigated. In late spring and late fall 2012, we determined gaseous elemental Hg (GEM or Hg(0)) in air and dissolved gaseous Hg (DGM, mainly Hg(0)) in surface waters to explore the spatial-temporal variations of Hg(0) and further to estimate the air/sea Hg(0) flux in the Yellow Sea.

View Article and Find Full Text PDF

Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively.

View Article and Find Full Text PDF

One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.

View Article and Find Full Text PDF

The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle.

View Article and Find Full Text PDF

Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.).

View Article and Find Full Text PDF

To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.

View Article and Find Full Text PDF

Forested catchments are an important part of the mercury (Hg) cycle and a link between the atmospheric and the aquatic environments. In this study, Hg input and output fluxes and its retention were investigated at subtropical forested catchments in southwest China. Significantly enhanced atmospheric Hg inputs were observed, and the contribution of litterfall Hg plays a more important role at these subtropical forested catchments.

View Article and Find Full Text PDF