The removal and recovery of uranium [U(VI)] from organic containing wastewater has been a challenging in radioactive wastewater purification. Here, we designed a polyamine/amidoxime polyacrylonitrile fiber (PAN-AO-A) with high removal efficiency, excellent selectivity, excellent organic resistance and low cost by combining the anti-organic properties of amidoxime polyacrylonitrile fiber (PAN-AO-A) with the high adsorption capacity of polyamine polyacrylonitrile fiber, which is used to extract U(VI) from low-level uranium-containing wastewater with high ammonia nitrogen and organic content. PAN-AO-A adsorbent with high grafting rate (86.
View Article and Find Full Text PDFObjective: Optic chiasma compression and associated visual impairment induced by a non-functioning pituitary adenoma (NFPA) is commonly assessed by the optic disk and retina but is inadequate to understand the entire visual pathway impairment. We aim to evaluate the use of optical coherence tomography (OCT) coupled with diffusion tensor imaging (DTI) for the preoperative evaluation of visual pathway impairment.
Methods: Fifty-three patients with NFPA (categorized into mild and heavy compression subgroups) were subjected to OCT to calculate the thickness of the circumpapillary retinal nerve fiber layer (CP-RNFL), macular ganglion cell complex (GCC), macular ganglion cell layer (GCL), and macular inner plexus layer (IPL), as well as to DTI to calculate the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values.
Single junction binary all-small-molecule (ASM) organic solar cells (OSCs) with power conversion efficiency (PCE) beyond 14% are achieved by using non-fullerene acceptor Y6 as the electron acceptor, but still lag behind that of polymer OSCs. Herein, an asymmetric Y6-like acceptor, BTP-FCl-FCl, is designed and synthesized to match the recently reported high performance small molecule donor BTR-Cl, and a record efficiency of 15.3% for single-junction binary ASM OSCs is achieved.
View Article and Find Full Text PDFOver the past few decades, the immune system, including both the adaptive and innate immune systems, proved to be essential and critical to brain damage and recovery in the pathogenesis of several diseases, opening a new avenue for developing new immunomodulatory therapies and novel treatments for many neurological diseases. However, due to the specificity and structural complexity of the central nervous system (CNS), and the limit of the related technologies, the biology of the immune response in the brain is still poorly understood. Here, we discuss the application of novel technologies in studying the brain immune response, including single-cell RNA analysis, cytometry by time-of-flight, and whole-genome transcriptomic and proteomic analysis.
View Article and Find Full Text PDFMultifunctional core-shell nanocarriers based on zinc oxide (ZnO)-gated magnetic mesoporous silica nanoparticles (MMSN) were prepared for cancer treatment through magnetic targeting and pH-triggered controlled drug release. Under an external magnetic field, the MMSN could actively deliver chemotherapeutic agent, daunomycin (DNM), to the targeted sites. At neutral aqueous, the functionalized MMSN could stably accommodate the DNM molecules since the mesopores were capped by the ZnO gatekeepers.
View Article and Find Full Text PDFA deep highest occupied molecular orbital (HOMO) level is a prerequisite for polymer donor material to boost the organic solar cells (OSCs) performance by achieving high open circuit voltage ( V). Abandoning the traditional concept of donor-acceptor (D-A) structure, two copolymers PBTZ-4TC and PBTZ-C4T based on acceptor-π-acceptor (A-π-A) architecture, where thiophene as the bridge, the difluorinated benzotriazole (BTZ) as A unit alternating copolymerized with 4,4'-dicarboxylate-substituted difluorotetrathiophene (4TC) and 3,3'-dicarboxylate-substituted difluorotetrathiophene (C4T) as A, respectively, are developed. Because of the double acceptor blocks with high electron affinity, both A-π-A type copolymers possess the lower HOMO levels of 5.
View Article and Find Full Text PDFA trade-off between open-circuit voltage (V ) and high short-circuit (J ) becomes one of the most vital problems limiting further improvement in polymer solar cells' (PSCs) efficiency. In this work, two asymmetric polymer donors PBDT-F-2TC and PBDT-SF-2TC are designed and synthesized. When blended with a state-of-the-art acceptor IT-4F with low lowest-unoccupied molecular orbital level, simultaneously high V (up to 0.
View Article and Find Full Text PDFMain chain donor and side chain acceptor (D-s-A) copolymers are an important branch of the D-A copolymer family. However, the development of D-s-A copolymers significantly falls behind the alternative D-A copolymers, especially for organic solar cells, because a breakthrough in device performance is not yet obtained with a reported power conversion efficiency (PCE) of 2%-4%. Herein, a newly developed D-s-A copolymer PDRCNBDT, bearing 2-(1, 1-dicyanomethylene) rhodanine pendant group as the donor material, delivers a high PCE of 5.
View Article and Find Full Text PDFBioactive components in the midgut of ticks play a key role in tick blood digestion, feeding and pathogen transmission. The study of protein and gene targets in midgut provides opportunities to explore novel tick control strategies. Only a few nucleotide sequences are available in public databases for Haemaphysalis flava, an important disease vector for humans and animals.
View Article and Find Full Text PDF