During the Marinoan Ice Age (ca. 654-635 Ma), one of the 'Snowball Earth' events in the Cryogenian Period, continental icesheets reached the tropical oceans. Oceanic refugia must have existed for aerobic marine eukaryotes to survive this event, as evidenced by benthic phototrophic macroalgae of the Songluo Biota preserved in black shales interbedded with glacial diamictites of the late Cryogenian Nantuo Formation in South China.
View Article and Find Full Text PDFDiversification following the end-Permian mass extinction marks the initiation of Mesozoic reptile dominance and of modern marine ecosystems, yet major clades are best known from the Middle Triassic suggesting delayed recovery, while Early Triassic localities produce poorly preserved specimens or have restricted diversity. Here we describe gen. et sp.
View Article and Find Full Text PDFThe Middle Triassic Luoping Biota in south-west China represents the inception of modern marine ecosystems, with abundant and diverse arthropods, fishes and marine reptiles, indicating recovery from the Permian-Triassic mass extinction. Here we report a new specimen of the predatory marine reptile Diandongosaurus, based on a nearly complete skeleton. The specimen is larger than most other known pachypleurosaurs, and the body shape, caniniform teeth, clavicle with anterior process, and flat distal end of the anterior caudal ribs show its affinities with Diandongosaurus acutidentatus, while the new specimen is approximately three times larger than the holotype.
View Article and Find Full Text PDFPaleozoic and Precambrian sedimentary successions frequently contain massive dolomicrite [CaMg(CO)] units despite kinetic inhibitions to nucleation and precipitation of dolomite at Earth surface temperatures (<60 °C). This paradoxical observation is known as the "dolomite problem." Accordingly, the genesis of these dolostones is usually attributed to burial-hydrothermal dolomitization of primary limestones (CaCO) at temperatures of >100 °C, thus raising doubt about the validity of these deposits as archives of Earth surface environments.
View Article and Find Full Text PDFBanded iron formations were a prevalent feature of marine sedimentation ~3.8-1.8 billion years ago and they provide key evidence for ferruginous oceans.
View Article and Find Full Text PDF