Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator.
View Article and Find Full Text PDFSingle-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks.
View Article and Find Full Text PDFHerein, we present a new series of CuI-based hybrid materials with tunable structures and semiconducting properties. The CuI inorganic modules can be tailored into a one-dimensional (1D) chain and two-dimensional (2D) layer and confined/stabilized in coordination frameworks of potassium isonicotinic acid (HINA) and its derivatives (HINA-R, R = OH, NO, and COOH). The resulting CuI-based hybrid materials exhibit interesting semiconducting behaviors associated with the dimensionality of the inorganic module; for instance, the structures containing the 2D-CuI module demonstrate significantly enhanced photoconductivity with a maximum increase of five orders of magnitude compared to that of the structures containing the 1D-CuI module.
View Article and Find Full Text PDFThe electronic conductivity (EC) of metal-organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H O on the EC of MOFs is rarely reported. We explored the effect of H O on the EC in the MOFs (NH ) -MIL-125 and its derivatives with experimental and theoretical investigations.
View Article and Find Full Text PDFSurface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO to form core-sheath nanowire arrays.
View Article and Find Full Text PDFHydrogen-bonded organic frameworks (HOFs) are a rising class of promising proton-conducting materials. However, they always suffer from the inherent contradiction between chemical stability and proton conduction. Herein, inspired by the self-assembly of lipid bilayer membranes, a series of aminomethylphosphonic acid-derived single-component HOFs are successfully developed with different substituents attached to the phosphonate oxygen group.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2022
The layer-by-layer liquid-phase epitaxy (LBL-LPE) method is widely used in preparing metal-organic framework (MOF) thin films with the merits of controlling thickness and out-of-plane orientation for superior performances in applications. The LBL-LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel "in-plane self-limiting and self-repairing" thin-film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu (HHTP) -xC thin film via microscopic analysis techniques and electrical measurements.
View Article and Find Full Text PDFChallenges remain in the development of novel multifunctional electrocatalysts and their industrial operation on low-electricity pair-electrocatalysis platforms for the carbon cycle. Herein, an enzyme-inspired single-molecular heterojunction electrocatalyst ((NH ) -NiPc/CNTs) with specific atomic nickel centers and amino-rich local microenvironments for industrial-level electrochemical CO reduction reaction (eCO RR) and further energy-saving integrated CO electrolysis is designed and developed. (NH ) -NiPc/CNTs exhibit unprecedented catalytic performance with industry-compatible current densities, ≈100% Faradaic efficiency and remarkable stability for CO -to-CO conversion, outperforming most reported catalysts.
View Article and Find Full Text PDFAccurate fire warning is very important for people's life and property safety. The most commonly used fire alarm is based on the detection of a single factor of gases, smoke particles, or temperature, which easily causes false alarm due to complex environmental conditions. A facile multi-factor route for fabricating an accurate analog fire alarm using a Pb S I nanowire mesh based on its photoelectric and gas-sensing dual function is presented.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2022
The modification of inorganic two-dimensional (2D) materials with organic functional motifs is in high demand for the optimization of their properties, but it is still a daunting challenge. Organic metal chalcogenides (OMCs) are a type of newly emerging 2D materials, with metal chalcogenide layers covalently anchored by long-range ordered organic functional motifs, these materials are extremely desirable but impossible to realize by traditional methods. Both the inorganic layer and organic functional motifs of OMCs are highly designable and thus provide this type of 2D materials with enormous variety in terms of their structure and properties.
View Article and Find Full Text PDFA new 2D fluorescent organic-metal chalcogenide (OMC), CdClHT (HT = 4-hydroxythiophenol), evenly covered with phenol groups is reported. CdClHT represents unparalleled selectivity and the highest sensitivity towards 2,4,6-trinitrophenol (TNP) ( = 2.16 × 10 m, experimental LOD = 2 nM), among all reported 2D conjugated polymer (CP) luminescent detectors.
View Article and Find Full Text PDFLuminescent metal-organic frameworks (LMOFs) with diverse structural features and promising fluorescence-based applications have attracted wide attention in the past two decades. In this work, a LMOF with the formula [Ca(tcbpe-F)(HO)] (1, LMOF-411) has been constructed from calcium (Ca) and 1,1,2,2-tetrakis(4-(4-carboxyphenyl)phenyl)ethene (Htcbpe-F). Compound 1 features a three-dimensional framework with a 10-nodal net topology.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) built from different building units offer functionalities going far beyond gas storage and separation. In connection with advanced applications, e.g.
View Article and Find Full Text PDFIntroducing porous material into optical cavities is a critical step toward the utilization of quantum-electrodynamical (QED) effects for advanced technologies, in the context of sensing. We demonstrate that crystalline, porous metal-organic frameworks (MOFs) are well suited for the fabrication of optical cavities. In going beyond functionalities offered by other materials, they allow for the reversible loading and release of guest species into and out of optical resonators.
View Article and Find Full Text PDFThe construction of hydrophobic nanochannel with hydrophilic sites for bionic devices to proximally mimick real bio-system is still challenging. Taking the advantages of MOF chemistry, a highly oriented CuTCPP thin film has been successfully reconstructed with ultra-thin nanosheets to produce abundant two-dimensional interstitial hydrophobic nanochannels with hydrophilic sites. Different from the classical active-layer material with proton transport in bulk, CuTCPP thin film represents a new type of active-layer with proton transport in nanochannel for bionic proton field-effect transistor (H -FETs).
View Article and Find Full Text PDFArtificial transistors represent an ideal means for meeting the requirements in interfacing with biological systems. It is pivotal to develop new proton-conductive materials for the transduction between biochemical events and electronic signals. Herein, the first demonstration of a porous organic polymer membrane (POPM) as a proton-conductive material for protonic field-effect transistors is presented.
View Article and Find Full Text PDFEngineering the band gap chemically by organic molecules is a powerful tool with which to optimize the properties of inorganic 2D materials. The obtained materials are however still limited by inhomogeneous compositions and properties at nanoscale and small adjustable band gap ranges. To overcome these problems in the traditional exfoliation and then organic modification strategy, an organic modification and then exfoliation strategy was explored in this work for preparing 2D organic metal chalcogenides (OMCs).
View Article and Find Full Text PDFWe present a new approach to study charge transport within 2D layers of organic semi-conductors (OSCs) using atomic force microscopy (AFM)-based lithography applied to self-assembled monolayers (SAMs), fabricated from appropriate organothiols. The extent of lateral charge transport was investigated by insulating pre-defined patches within OSC-based SAMs with regions of insulating SAM made from large band gap alkanethiolates. The new method is demonstrated using a phenyl-linked anthracenethiolate (PAT), 4-(anthracene-2-ylethynyl)benzyl thiolate.
View Article and Find Full Text PDFChem Commun (Camb)
July 2019
Herein, we report two nanocluster-based compounds built on an unprecedented cluster [BaSbClO], which represents the first example of a discrete alkaline earth (AE)-containing oxochloride cluster and the largest Sb-based oxohalide cluster to date; the proton-conducting property of the compounds was investigated.
View Article and Find Full Text PDFPhotoconductivity is a characteristic property of semi-conductors. Herein, we present a photo-conducting crystalline metal-organic framework (MOF) thin film with an on-off photocurrent ratio of two orders of magnitude. These oriented, surface-mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C guests, loaded in the pores using a layer-by-layer process.
View Article and Find Full Text PDFA new metal-organic framework with excellent water stability, {H[(N(CH3)4)2][Gd3(NIPA)6]}·3H2O (1, H2NIPA = 5-nitroisophthalic acid), displays a proton conductivity of 7.17 × 10-2 S cm-1 (at 75 °C and 98% relative humidity), which is among the highest values for proton-conducting MOFs.
View Article and Find Full Text PDFObjective: To explore the correlation between growth differentiation factor 15 (GDF-15) -3148C/G polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction (STEMI) in Han population of Taiyuan area.
Method: The present study included 92 STEMI patients and 56 normal controls based on coronary angiography; STEMI group was divided into collateral group and non-collateral group according to Rentrop's grading method. Polymerase chain reaction (PCR) and DNA sequencing methods were used to detect and analyze the GDF-15 -3148C/G polymorphism in all participants.
The utility of electronically conductive metal-organic frameworks (EC-MOFs) in high-performance devices has been limited to date by a lack of high-quality thin film. The controllable thin-film fabrication of an EC-MOF, Cu (HHTP) , (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene), by a spray layer-by-layer liquid-phase epitaxial method is reported. The Cu (HHTP) thin film can not only be precisely prepared with thickness increment of about 2 nm per growing cycle, but also shows a smooth surface, good crystallinity, and high orientation.
View Article and Find Full Text PDFWe report a facile approach to prepare metal-nanocatalyst-incorporated carbon thin films with uniform size distribution via carbonization of surface-mounted metal-organic frameworks (SURMOFs) and metal oxo-clusters loaded SURMOF. The calcinated thin films have high performance of methylene blue degradation and the reduction of nitrobenzene. This study describes a general strategy for preparing various nanoparticle-impregnated porous carbon thin films for applications in catalysis.
View Article and Find Full Text PDF