Publications by authors named "Zhihong Feng"

In this letter, a 263 GHz traveling wave tube for electron paramagnetic resonance spectroscopy is designed, fabricated and tested. A periodic permanent magnet focused pencil beam electron optical system is adopted. A folded waveguide slow-wave structure with modified serpentine bends is optimized to provide high-power wideband performance and stable operation.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic respiratory disease characterised by irreversible airways obstruction associated with chronic airways inflammation and remodelling, while the pathogenesis and the mechanistic differences between patients remain to be fully elucidated. We previously reported that alarmin cytokine IL-33 may contribute to the production of autoantibodies against respiratory epithelial cells. Here we expand the hypothesis that pulmonary autoimmune responses induced by airway microbiota also contribute to the progression of COPD.

View Article and Find Full Text PDF
Article Synopsis
  • * It was found that as temperature decreases, thermal transport shifts from electron-phonon coupling to electron diffusion, with the transition temperature varying based on the microbridge length, aligning well with simulations using a hot-spot model.
  • * The research also revealed that the electron-phonon thermal conductance follows a temperature power law typical for pristine graphene, and the electron diffusion behavior is consistent with the Wiedemann-Franz law without the need for adjusting the Lorentz number.
View Article and Find Full Text PDF

In the digital workflow of complete denture fabrication, one solution for producing computer-aided design and computer-aided manufacturing dentures has been to mill the denture teeth and base separately and then bond them together. The correct bonding of the denture teeth and base is important to reproduce the designed occlusion in the definitive prosthesis. A novel technique is described to assist in the accurate positioning of denture teeth on the denture base by constructing auxiliary positioning slots on the denture base and auxiliary positioning posts on the denture teeth.

View Article and Find Full Text PDF

As an exceptional nonlinear material, graphene offers versatile appealing properties, such as electro-optic tunability and high electromagnetic field confinement in the terahertz regime, spurring advance in ultrashort pulse formation, photodetectors and plasmonic emission. However, limited by atomic thickness, weak light-matter interaction still limits the development of integrated optical devices based on graphene. Here, an exquisitely designed meta-cavities combined with patterned graphene is used to overcome this challenge and promote THz-graphene interaction via terahertz location oscillation.

View Article and Find Full Text PDF

α1-Antitrypsin (AAT), a serine protease inhibitor, is the third most abundant protein in plasma. Although the best-known function of AAT is irreversible inhibition of elastase, AAT is an acute-phase reactant and is increasingly recognized to have a panoply of other functions, including as an anti-inflammatory mediator and a host-protective molecule against various pathogens. Although a canonical receptor for AAT has not been identified, AAT can be internalized into the cytoplasm and is known to affect gene regulation.

View Article and Find Full Text PDF

Purpose: Forming a compact biological seal between the gingiva and the implant interface around the percutaneous parts of an implant is one of the key issues in preventing peri-implantitis.

Methods: In this study, since microRNA-21 (miR-21) has been approved to promote fibroblast proliferation and collagen formation in skin fibrosis, we prepared miR-21-loaded chitosan (CS)/tripolyphosphate (TPP)/hyaluronic acid (HA) nanoparticles (CTH NPs) and cross-linked them to smooth Ti surfaces with 0.2% gel solution for reverse transfection, after which isolated human gingival fibroblasts were cultured on the miR-21-functionalized Ti substrates.

View Article and Find Full Text PDF

Background: This study aimed to investigate the biomechanical behaviors of polyether ether ketone (PEEK) and traditional materials (titanium and fiber) when used to restore tooth defects in the form of prefabricated post or customized post via computational modelling.

Methods: First, the prototype of natural tooth, and the prototypes of prefabricated post and customized post were established, respectively, whilst the residual root was restored with dentin ferrule using reverse engineering methods. Then, the stress and strain of CFR-PEEK (PEEK reinforced by 30% carbon fiber) and pure PEEK (PEEK without any reprocessing) post were compared with those made in traditional materials using the three-dimensional finite element method.

View Article and Find Full Text PDF

GaO-based solar-blind photodetectors have been extensively investigated for a wide range of applications. However, to date, a lot of research has focused on optimizing the epitaxial technique or constructing a heterojunction, and studies concerning surface passivation, a key technique in electronic and optoelectronic devices, are severely lacking. Here, we report an ultrasensitive metal-semiconductor-metal photodetector employing a β-GaO homojunction structure realized by low-energy surface fluorine plasma treatment, in which an ultrathin fluorine-doped layer served for surface passivation.

View Article and Find Full Text PDF

Surface plasmon polaritons have been extensively studied owing to the promising characteristics of near fields. In this paper, the cascade coupling of graphene surface plasmon polaritons (GSPPs) originating from cascading excitation and multiple coupling within a composite graphene-dielectric stack is presented. GSPPs confined to graphene layers are distributed in the entire stack as waveguide modes.

View Article and Find Full Text PDF

In this paper, high-performance 1×128 linear arrays of 4H-SiC ultraviolet (UV) avalanche photodiode (APD) with dual-frequency plasma enhanced chemical vapor deposition (PECVD) passivation are demonstrated for the first time. The results show that SiNx dielectric deposited by dual-frequency PECVD can effectively reduce the leakage current at high bias voltages. Due to the improved 4H-SiC epi-layer material and SiNx passivation, the fabricated 22 mm-long 1×128 4H-SiC APD linear arrays exhibit an excellent performance with a high pixel yield of 100% and a small breakdown voltage variation of 0.

View Article and Find Full Text PDF

() and non-tuberculous mycobacteria (NTM) are formidable causes of lung diseases throughout the world. While is considered to be more virulent than NTM, host factors also play a key role in disease development. To elucidate whether there are differential immune responses to various mycobacteria, THP-1 macrophages were temporally infected with H37Rv or with four different NTM species.

View Article and Find Full Text PDF

In this work, parametric investigations on structural optimization are systematically made for 4H-SiC-based separated absorption charge and multiplication (SACM) avalanche ultraviolet photodiode (UV APD). According to our results, the breakdown voltage can be strongly affected by the thickness for the multiplication layer and the doping concentration for the charge control layer. The thickness for the n-type ohmic contact layer, the absorption layer, and the charge control layer can remarkably affect the light penetration depth, which correspondingly influences the number of photo-generated electron-hole pairs, and therefore the aforementioned layer thickness has a strong impact on the responsivity for SACM APD.

View Article and Find Full Text PDF

Terahertz (THz) modulators are always realized by dynamically manipulating the conversion between different resonant modes within a single unit cell of an active metasurface. In this Letter, to achieve real high-speed THz modulation, we present a staggered netlike two-dimensional electron gas (2DEG) nanostructure composite metasurface that has two states: a collective state with massive surface resonant characteristics and an individual state with meta-atom resonant characteristics. By controlling the electron transport of the nanoscale 2DEG with an electrical grid, collective-individual state conversion can be realized in this composite metasurface.

View Article and Find Full Text PDF

Polyether-ether-ketone (peek) is one of the most common materials used for load-bearing orthopedic devices owing to its radiolucency and favorable mechanical properties. However, current smooth-surfaced peek implants can lead to fibrous capsule formation. To overcome this issue, here, peek specimens with well-defined internal cross-linked structures (macropore diameters of 1.

View Article and Find Full Text PDF

The association between non-tuberculous mycobacterial lung disease and alpha-1-antitrypsin (AAT) deficiency is likely due, in part, to underlying emphysema or bronchiectasis. But there is increasing evidence that AAT itself enhances host immunity against microbial pathogens and thus deficiency could compromise host protection. The goal of this project is to determine if AAT could augment macrophage activity against non-tuberculous mycobacteria.

View Article and Find Full Text PDF

Background: Radiation exposure negatively affects the regenerative ability and makes reconstruction of bone defects after tumor section difficult. miR-34a is involved in radiation biology and bone metabolism. The aim of this study was to investigate whether miR-34a could contribute to bone regeneration in irradiated bone defects.

View Article and Find Full Text PDF

Layered black phosphorus (BP) has been expected to be a promising material for future electronic and optoelectronic applications since its discovery. However, the difficulty in mass fabricating layered air-stable BP severely obstructs its potential industry applications. Here, we report a new BP chemical modification method to implement all-solution-based mass production of layered air-stable BP.

View Article and Find Full Text PDF

High-quality graphene materials and high-performance graphene transistors have attracted much attention in recent years. To obtain high-performance graphene transistors, large single-crystal graphene is needed. The synthesis of large-domain-sized single-crystal graphene requires low nucleation density; this can lead to a lower growth rate.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.

View Article and Find Full Text PDF

Regeneration of alveolar bone for dental implant remains a major issue, partifcularly for patients suffering from severe bone adsorption and irregular socket trauma. Recapitulating embryological development is becoming an attractive approach for engineer organ or three-dimensional tissues from stem cells. In this study, we aimed to develop an injectable "cartilaginous" graft with adequate mechanical resistance and ideal bone remodelling potential.

View Article and Find Full Text PDF

Background: The reconstruction of bone defects is often impaired by radiotherapy since bone quality is compromised by radiation. This study aims to investigate the therapeutic efficacy of the composite cell sheets-bone marrow mesenchymal stem cell (BMSC) sheets cocultured with endothelial progenitor cells (EPCs)-in the healing of irradiated bone defects and the biological effects of EPCs on the osteogenic properties of BMSC sheets.

Methods: BMSCs and EPCs were isolated from rat bone marrow.

View Article and Find Full Text PDF

We developed a new way to enhance the photoresponsivity of a van der Waals heterojunction p-n diode using surface acoustic waves (SAWs). The diode was constructed on top of a piezoelectric LiNbO3 substrate and composed of p-type black phosphorus (BP) and n-type molybdenum disulfide (MoS2) flakes that partly overlapped with each other. This layout facilitated the applied SAWs to rapidly drive carriers out of the depletion region.

View Article and Find Full Text PDF

For supported graphene, reliable differentiation and clear visualization of distinct graphene layers and fine features such as wrinkles are essential for revealing the structure-property relationships for graphene and graphene-based devices. Scanning electron microscopy (SEM) has been frequently used for this purpose where high-quality image contrast is critical. However, it is surprising that the effect of key imaging parameters on the image contrast has been seriously undermined by the graphene community.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionffq4dn7us4bod97e2ebfl2a7oubth167): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once