Developing a high-performance activator is crucial for the practical application of peroxymonosulfate-based advanced oxidation processes (PMS-AOPs). High-entropy oxides (HEOs) have attracted increasing attention due to their stable crystal structure, flexible composition and unique functionality. However, research into the mechanisms by which HEOs function as PMS activators for degrading organic pollutants remains insufficient, and the relationship between entropy and the catalytic performance of HEOs has yet to be clarified.
View Article and Find Full Text PDFThe complexes of metal center and nitrogen ligands are the most representative systems for catalyzing hydrogenation reactions in small molecule conversion. Developing heterogeneous catalysts with similar active metal-nitrogen functional centers, nevertheless, still remains challenging. In this work, we demonstrate that the metal-nitrogen coupling in anti-perovskite Co N can be effective modulated by Cu doping to form Co CuN, leading to strongly promoted hydrogenation process during electrochemical reduction of nitrate (NO RR) to ammonia.
View Article and Find Full Text PDFElectrochemically converting NO compounds into ammonia represents a sustainable route to remove industrial pollutants in wastewater and produce valuable chemicals. Bimetallic nanomaterials usually exhibit better catalytic performance than the monometallic counterparts, yet unveiling the reaction mechanism is extremely challenging. Herein, we report an atomically precise [AgPd (CH)](BPh) (AgPd) nanocluster as a model catalyst toward the electrochemical NO reduction reaction (eNORR) to elucidate the different role of the Ag and Pd site and unveil the comprehensive catalytic mechanism.
View Article and Find Full Text PDFThe redox center of transition metal oxides and hydroxides is generally considered to be the metal site. Interestingly, proton and oxygen in the lattice recently are found to be actively involved in the catalytic reactions, and critically determine the reactivity. Herein, taking glycerol electrooxidation reaction as the model reaction, we reveal systematically the impact of proton and oxygen anion (de)intercalation processes on the elementary steps.
View Article and Find Full Text PDFTransition metal oxides or (oxy)hydroxides have been intensively investigated as promising electrocatalysts for energy and environmental applications. Oxygen in the lattice was reported recently to actively participate in surface reactions. Herein, we report a sacrificial template-directed approach to synthesize Mo-doped NiFe (oxy)hydroxide with modulated oxygen activity as an enhanced electrocatalyst towards oxygen evolution reaction (OER).
View Article and Find Full Text PDFIn this work, nanoscale hydroxyapatite (HAP)-modified ZIF-67 composite, HAP/ZIF-67, with abundant functional groups for uranium(VI) binding was synthesized via a facile ultrasound-assisted synthesis method. The prepared HAP/ZIF-67 was characterized by XRD, SEM, TEM, BET, FT-IR and XPS techniques, and was applied to eliminate uranium(VI) from aqueous solutions under various conditions, i.e.
View Article and Find Full Text PDFTetracycline and Cr(VI) as non-biodegradable environmental contaminants have attracted increasing attention because of their chronic toxicity. In this regard, the environmentally friendly Z-scheme photocatalytic decontamination system has been widely used for contaminant treatment. Herein, a novel 3D Z-scheme α-FeOOH/FeS composite photocatalyst was successfully synthesized for the first time via a simple one-pot hydrothermal method.
View Article and Find Full Text PDF