Flat-band materials have garnered extensive attention due to their captivating properties associated with strong correlation effects. While flat bands have been discovered in several types of 2D materials, their existence in 1D systems remains elusive. Here, we propose a 1D frustrated lattice, specifically the 1D zigzag lattice, as a platform for hosting flat bands.
View Article and Find Full Text PDFMaterials with flat bands can serve as a promising platform to investigate strongly interacting phenomena. However, experimental realization of ideal flat bands is mostly limited to artificial lattices or moiré systems. Here, a general way is reported to construct 1D flat bands in phosphorene nanoribbons (PNRs) with a pentagonal nature: penta-hexa-PNRs and penta-dodeca-PNRs, wherein the corresponding 1D flat bands are directly verified by using angle-resolved photoemission spectroscopy.
View Article and Find Full Text PDFEngineered bacterial therapy holds enormous potential for treating intestinal diseases, employing synthetic biology techniques to achieve localized drug delivery within intestines. However, effective delivery of engineered bacteria to lesion sites and ensuring sustained colonization remain challenging. Here, a mucus encapsulated microsphere gel (MM) delivery system is developed to encapsulate genetically engineered bacteria capable of detecting and treating enteritis.
View Article and Find Full Text PDFThe Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl Fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts is ongoing.
View Article and Find Full Text PDFThe mechanical properties of porcupine quills have attracted the interest of researchers due to their unique structure and composition. However, there is still a knowledge gap in understanding how these properties can be utilized to design biomimetic structures with enhanced performance. This study delves into the nanomechanical and macro-mechanical properties of porcupine quills, unveiling varied elastic moduli across different regions and cross sections.
View Article and Find Full Text PDFTwo-dimensional checkerboard lattice, the simplest line-graph lattice, has been intensively studied as a toy model, while material design and synthesis remain elusive. Here, we report theoretical prediction and experimental realization of the checkerboard lattice in monolayer CuN. Experimentally, monolayer CuN can be realized in the well-known N/Cu(100) and N/Cu(111) systems that were previously mistakenly believed to be insulators.
View Article and Find Full Text PDFWe demonstrated a hybrid sensor of fiber Bragg grating (FBG) and Fabry-Perot interferometer (FPI) based on fiber-tip microcantilever for simultaneous measurement of temperature and humidity. The FPI was developed using femtosecond (fs) laser-induced two-photon polymerization to print the polymer microcantilever at the end of a single-mode fiber, achieving a humidity sensitivity of 0.348 nm/%RH (40% to 90%, when temperature = 25 °C ± 0.
View Article and Find Full Text PDFThere are urgent demands of ultraviolet (UV) photodetectors with high sensitivity and fast response due to the wide application of ultraviolet light in the fields of medical treatment, space exploration, optical communication and semiconductor industry. The response speed of traditional ZnO-based UV photodetectors is always limited by the carrier mobility and electrical resistance caused by the external circuits. Utilizing the all-optical detection method may replace the complex circuit structure and effectively improve the response speed of photodetectors.
View Article and Find Full Text PDFTwo-dimensional (2D) materials and their heterostructures have been intensively studied in recent years due to their potential applications in electronic, optoelectronic, and spintronic devices. Nonetheless, the realization of 2D heterostructures with atomically flat and clean interfaces remains challenging, especially for air-sensitive materials, which hinders the in-depth investigation of interface-induced phenomena and the fabrication of high-quality devices. Here, we circumvented this challenge by exfoliating 2D materials in an ultrahigh vacuum.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2022
Uncertainty of target motion, limited perception ability of onboard cameras, and constrained control have brought new challenges to unmanned aerial vehicle (UAV) dynamic target tracking control. In virtue of the powerful fitting ability and learning ability of the neural network, this paper proposes a new deep reinforcement learning (DRL)-based end-to-end control method for UAV dynamic target tracking. Firstly, a DRL-based framework using onboard camera image is established, which simplifies the traditional modularization paradigm.
View Article and Find Full Text PDFBiomimetics (Basel)
October 2022
Visual-inertial odometry is critical for Unmanned Aerial Vehicles (UAVs) and robotics. However, there are problems of motion drift and motion blur in sharp brightness changes and fast-motion scenes. It may cause the degradation of image quality, which leads to poor location.
View Article and Find Full Text PDFWe demonstrate for the first time, to the best of our knowledge, the fabrication of a high-quality fiber Bragg grating (FBG) in ZBLAN fiber by using an efficient femtosecond laser point-by-point technology. Two types of FBG, e.g.
View Article and Find Full Text PDFThe most important optical component in an optical fiber endoscope is its objective lens. To achieve a high imaging performance level, the development of an ultra-compact objective lens is thus the key to an ultra-thin optical fiber endoscope. In this work, we use femtosecond laser 3D printing to develop a series of micro objective lenses with different optical designs.
View Article and Find Full Text PDFRespiration rate is an essential vital sign that requires monitoring under various conditions, including in strong electromagnetic environments such as in magnetic resonance imaging systems. To provide an electromagnetically-immune breath-sensing system, we propose an all-fiber-optic wearable breath sensor based on a fiber-tip microcantilever. The microcantilever was fabricated on a fiber-tip by two-photon polymerization microfabrication based on femtosecond laser, so that a micro Fabry-Pérot (FP) interferometer was formed between the microcantilever and the end-face of the fiber.
View Article and Find Full Text PDFBiomimetics (Basel)
February 2022
Fast movement of objects and illumination changes may lead to a negative effect on camera images for object detection and tracking. Event cameras are neuromorphic vision sensors that capture the vitality of a scene, mitigating data redundancy and latency. This paper proposes a new solution to moving object detection and tracking using an event frame from bio-inspired event cameras.
View Article and Find Full Text PDFIn this paper, we investigate the problem of unmanned aerial vehicles (UAVs) autonomous tracking moving target with only an airborne camera sensor. We proposed a novel integrated controller framework for this problem based on multi-neural-network modules (MNNMs). In this framework, two neural networks are designed for target perception and guidance control, respectively.
View Article and Find Full Text PDFThis paper explores the equivalence between the linear active disturbance rejection control (LADRC) and incremental nonlinear dynamic inversion (INDI) controllers. The equivalence is verified using an n-order, single-input-single-output, perturbed, pure integration plant which represents a class of feedback linearizable systems. And the linear extended state observer (LESO) inside the LADRC is interpreted from a filter perspective, which shows that the core of the LESO is a low-pass filter.
View Article and Find Full Text PDFElectromagnetic wave (EMW)-absorbing materials have a great impact on civil use and national defense. In this paper, a novel composite, RGO@6CoTe-300 (the mass ratio of reduced graphene oxide to CoTe is 1:6, annealed at 300 °C), has been obtained through a facile melt-diffusion method and solvothermal method. The as-prepared samples have shown excellent reflection losses (RL) and effective adsorption bandwidth (EAB) by controlling the loading of CoTe and the annealing temperature.
View Article and Find Full Text PDFThe development of microwave absorption materials (MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human's health. And MAMs are also used in radar stealth for protecting the weapons from being detected. Many nanomaterials were studied as MAMs, but not all of them have the satisfactory performance.
View Article and Find Full Text PDFLocalized tilted fiber Bragg gratings (TFBGs) with low insertion loss are reported. A series of second-order TFBGs with tilt angles of 0°, 7°, 14°, and 21° was inscribed line by line directly in a single-mode fiber. For the 7° TFBG, the Bragg resonance was 2.
View Article and Find Full Text PDFBackground: The trachea is the uppermost respiratory airway element connecting the larynx to the bronchi Airway reconstructions in humans are often developed from animal models but there is limited knowledge comparing tracheal biomechanics between species. We aimed to assess the structure and biomechanics of porcine, canine, caprine and human airways.
Methods: Tracheas from pigs (n=15), goats (n=9) and canines (n=9) were divided into three groups (4, 6 and 8-ringswhile human left principal brochi (n=12) were divided into two groups (3and-rings).