Background: Mobile learning is a valuable supplement to traditional education methods, but the current research on mobile learning is still insufficient. This study aimed to assess dental undergraduates' behaviors and attitudes towards mobile learning during course work and scientific research and to compare these findings to those of medical and non-medical students.
Methods: A cross-sectional survey was conducted among undergraduates at Sichuan University, China.
Dendrite growth and corrosion issues have significantly hindered the usability of Zn anodes, which further restricts the development of aqueous zinc-ion batteries (AZIBs). In this study, a zinc-philic and hydrophobic Zn (100) crystal plane end-capping reagent (ECR) is introduced into the electrolyte to address these challenges in AZIBs. Specifically, under the mediation of 100-ECR, the electroplated Zn configures oriented dense deposition of (100) crystal plane texture, which slows down the formation of dendrites.
View Article and Find Full Text PDFAqueous Zn-ion batteries (AZIBs), recognized for their high security, reliability, and cost efficiency, have garnered considerable attention. However, the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application. In this study, we introduced a ubiquitous biomolecule of phenylalanine (Phe) into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.
View Article and Find Full Text PDFThe Zn//V O system not only faces the incontrollable growth of zinc (Zn) dendrites, but also withstands the cross-talk effect of by-products produced from the cathode side to the Zn anode, inducing interelectrode talk and aggravating battery failure. To tackle these issues, we construct a rapid Zn -conducting hydrogel electrolyte (R-ZSO) to achieve Zn deposition modulation and side reaction inhibition in Zn//V O full cells. The polymer matrix and BN exhibit a robust anchoring effect on SO , accelerating Zn migration and enabling dense Zn deposition behavior.
View Article and Find Full Text PDFThe practical application of AZIBs is hindered by problems such as dendrites and hydrogen evolution reactions caused by the thermodynamic instability of Zinc (Zn) metal. Modification of the Zn surface through interface engineering can effectively solve the above problems. Here, sulfonate-derivatized graphene-boronene nanosheets (G&B-S) composite interfacial layer is prepared to modulate the Zn plating/stripping and mitigates the side reactions with electrolyte through a simple and green electroplating method.
View Article and Find Full Text PDFVanadium-based oxides have attracted much attention because of their rich valences and adjustable structures. The high theoretical specific capacity contributed by the two-electron-transfer process (V /V ) makes it an ideal cathode material for aqueous zinc-ion batteries. However, slow diffusion kinetics and poor structural stability limit the application of vanadium-based oxides.
View Article and Find Full Text PDFAqueous Zn ion batteries present notable advantages, including high abundance, low toxicity, and intrinsic nonflammability. However, they exhibit severe irreversibility due to uncontrolled dendrite growth and corrosion reactions, which limit their practical applications. Inspired by their distinct molecular recognition characteristics, supramolecular crown ethers featuring interior cavity sizes identical to the diameter of Zn ions were screened as macrocyclic hosts to optimize the Zn coordination environment, facilitating the suppression of the reactivity of HO molecules and inducing the in-situ formation of organic-inorganic hybrid dual-protective interphase.
View Article and Find Full Text PDFWestern corn rootworm (WCR) is one of the most devastating corn rootworm species in North America because of its ability to cause severe production loss and grain quality damage. To control the loss, it is important to identify the infection of WCR at an early stage. Because the root system is the earliest feeding source of the WCR at the larvae stage, assessing the direct damage in the root system is crucial to achieving early detection.
View Article and Find Full Text PDFRealizing rapid and stable bonding under humid conditions has remained a challenge in adhesion science and wound dressing. In this study, polyacrylate-based underwater tape with water-enhanced adhesion and antimicrobial performance was designed and synthesized. Good underwater adhesion performance is achieved through the reasonable selection of comonomers, among which 4-hydroxybutyl acrylate (4-HBA) and isobornyl acrylate (IBOA) provide rich hydrogen bond interactions and a rigid side chain stable structure, respectively.
View Article and Find Full Text PDFDue to the excellent specific capacity and high working voltage, manganese oxide (MnO ) has attracted considerable attention for aqueous zinc-ion batteries (AZIBs). However, the irreversible structural collapse and sluggish ionic diffusion lead to poor rate capability and inferior lifespan. Herein, we proposed a novel organic/inorganic hybrid cathode of carbon-based poly(4,4'-oxybisbenzenamine)/MnO (denoted as C@PODA/MnO ) for AZIBs.
View Article and Find Full Text PDFThe electric bicycle-sharing system (EBSS) is the fourth-generation urban shared bicycle travel system, which effectively improves the travel efficiency of urban residents and solve the problem of urban congestion. This study attempts to use an extended technology acceptance model (TAM) method to study the acceptance of EBSSs. We had introduced four potential variables, including perceived pleasure (PP), perceived environmental value (PEV), perceived cost (PC), and perceived reliability (PR), into the classic TAM to form a new EBSS-TAM.
View Article and Find Full Text PDFHigh-throughput imaging technologies have been developing rapidly for agricultural plant phenotyping purposes. With most of the current crop plant image processing algorithms, the plant canopy pixels are segmented from the images, and the averaged spectrum across the whole canopy is calculated in order to predict the plant's physiological features. However, the nutrients and stress levels vary significantly across the canopy.
View Article and Find Full Text PDFNAD(P)H: quinone oxidoreductase1 (NQO1) is an important detoxification enzyme that can protect mammalian cells against toxic quinones and reduce the risk of tumorigenesis. In this study, it was found that salvianolic acid B (SaB), lithospermic acid (LA), and rosmarinic acid (RA), three main hydrophilic constituents in Danshen, conjugated with glutathione (GSH) easily in vitro but exhibited no NQO1-inducing activities in Hepa 1c1c7 cells, which might attribute to their poor absorptions. After a simple methylation strategy that aimed at improving the liposolubility, both the NQO1-inducing activities and the absorptions in cells of the phenolic acids improved obviously, without losing the GSH-conjugating abilities.
View Article and Find Full Text PDFQuinone reductase (QR) induction is a reliable biomarker of phase II enzyme induction. In this study, glutathione (GSH) was employed and a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was introduced to reveal the chemical constituents with QR activity from the ethyl acetate extract of roots Salvia miltiorrhiza ('Danshen') and nine tanshinones (9, 13, 17-19, 21, 24-26), which could conjugate with GSH, were characterized by LC/MS/MS and considered to have QR activities. Then, thirteen tanshinones, including six compounds (17, 18, 21, 24-26) of the above nine tanshinones, were isolated to conduct QR induction evaluation, and it was found that miltirone and its derivatives (18, 20, 24, 26) exhibited significant activities.
View Article and Find Full Text PDFIn the present study, we examined the potential chemopreventive activity of dichloromethane extract of Eurycorymbus cavaleriei by investigating the change of constitutions after incubation with glutathione (GSH). The major constitutions in the dichloromethane extract of E. cavaleriei were cumarin compounds and their cleavage pattern was examined by LC-MS-MS and the characteristic product ions at m/z 206 and 207 were helpful to determine the substitutions of coumarinolignoid compounds.
View Article and Find Full Text PDFFor detection and differentiation of two types of triterpenoid saponins based on different aglycons of the lupane and oleanane skeleton from the roots of Pulsatilla chinensis (Bunge) Regel, the silver ion was introduced and electrospray ionization multi-stage tandem mass spectrometry was applied to analyze eleven triterpenoid saponin silver complexes. The quasi-molecular ion [M+Ag](+) was observed in the full-scan MS spectra of all the silver complexes. The MS(2) data of the [M+Ag](+) ion provided structural information on the sugar sequence of the oligosaccharide chains and the aglycon of the saponins.
View Article and Find Full Text PDF