Publications by authors named "Zhigang Shuai"

Evaluation of the charge transport property of organic semiconductors requires exact quantum dynamics simulation of large systems. We present a numerically nearly exact approach to investigate carrier transport dynamics in organic semiconductors by extending the non-Markovian stochastic Schrödinger equation with complex frequency modes to a forward-backward scheme and by solving it using the matrix product state (MPS) approach. By utilizing the forward-backward formalism for noise generation, the bath correlation function can be effectively treated as a temperature-independent imaginary part, enabling a more accurate decomposition with fewer complex frequency modes.

View Article and Find Full Text PDF

Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator. The construction is based on the minimum vertex cover of a bipartite graph.

View Article and Find Full Text PDF

Photosynthesis is a fundamental process that converts solar energy into chemical energy. Understanding the microscopic mechanisms of energy transfer in photosynthetic systems is crucial for the development of novel optoelectronic materials. Simulating these processes poses significant challenges due to the intricate interactions between electrons and phonons, compounded by static disorder.

View Article and Find Full Text PDF

The quantum dynamic (QD) study of organic lasing (OL) is a challenging issue in organic optoelectronics. Previously, the phenomenological method has achieved success in describing experimental observation. However, it cannot directly bridge the laser threshold (LT) with microscopic parameters, which is the advantage of the QD method.

View Article and Find Full Text PDF

Quantum transport in molecular junctions has attracted great attention. The charge motion in a molecular junction can cause geometric deformation, leading to strong electron phonon coupling, which was often overlooked. We have formulated a nearly exact method to assess the time-dependent current and occupation number in the molecular junction modeled by the electron-phonon coupled bridge state using the time-dependent density matrix renormalization group (TD-DMRG) method.

View Article and Find Full Text PDF
Article Synopsis
  • - The Energy Gap Law (EGL) suggests that as the energy gap decreases, the rate of non-radiative decay in materials increases, which poses challenges for developing near-infrared (NIR) emissive molecules.
  • - Recent experiments indicate that exciton delocalization in molecular aggregates can mitigate the effects of the EGL, potentially enabling better NIR emission.
  • - Using advanced simulations with the time-dependent density matrix renormalization group (TD-DMRG) method, researchers found that by adjusting excitonic coupling, the decay rate initially decreases, reaches a minimum, and then increases, influenced by various factors like energy gap size and system properties.
View Article and Find Full Text PDF

TenCirChem is an open-source Python library for simulating variational quantum algorithms for quantum computational chemistry. TenCirChem shows high-performance in the simulation of unitary coupled-cluster circuits, using compact representations of quantum states and excitation operators. Additionally, TenCirChem supports noisy circuit simulation and provides algorithms for variational quantum dynamics.

View Article and Find Full Text PDF

Exciton coherence length (ECL) characterizes the spatial extent of coherently delocalized excited states of molecular aggregates. Constructive/destructive superpositions of coherent molecular dipoles lead to superradiance/subradiance, where the radiative rate is enhanced/suppressed compared to that of a single molecule. Longer ECLs correspond to faster/slower radiative rates for superradiant/subradiant aggregates.

View Article and Find Full Text PDF

Organic/polymeric materials are of emerging importance for thermoelectric conversion. The soft nature of these materials implies strong electron-phonon coupling, often leading to carrier localization. This poses great challenges for the conventional Boltzmann transport description based on relaxation time approximation and band structure calculations.

View Article and Find Full Text PDF

The lower polariton (LP) can reduce the energy barrier of the reverse intersystem crossing (rISC) process from T to harvest triplet energy for fluorescence. Based on a Tavis-Cummings model including both singlet and triplet excitons, both coupled with quantized photons, we derive here a comprehensive rISC rate formalism. We found that the latter consists of three contributions: the one originated from spin-orbit coupling as first obtained by Martinez-Martinez et al.

View Article and Find Full Text PDF

Achieving high exciton utilization is a long-cherished goal in the development of organic light-emitting diode materials. Herein, a three-step mechanism is proposed to achieve 200% exciton utilization: (i) hot triplet exciton (T) conversion to singlet S; (ii) singlet fission from S into two T; (iii) and then a Dexter energy transfer to phosphors. The requirement is that S should lie slightly lower than or close to T and twice as high as T in energy.

View Article and Find Full Text PDF

Quantum computing has recently exhibited great potential in predicting chemical properties for various applications in drug discovery, material design, and catalyst optimization. Progress has been made in simulating small molecules, such as LiH and hydrogen chains of up to 12 qubits, by using quantum algorithms such as variational quantum eigensolver (VQE). Yet, originating from the limitations of the size and the fidelity of near-term quantum hardware, the accurate simulation of large realistic molecules remains a challenge.

View Article and Find Full Text PDF

The study of aggregation-induced emission luminogens (AIEgens) shows promising perspectives explored in lighting, optical sensors, and biological therapies. Due to their unique feature of intense emissions in aggregated solid states, it smoothly circumvents the weaknesses in fluorescent dyes, which include aggregation-caused quenching of emission and poor photobleaching character. However, our present knowledge of the AIE phenomena still cannot comprehensively explain the mechanism behind the substantially enhanced emission in their aggregated solid states.

View Article and Find Full Text PDF

Using a photonic quantum computer for boson sampling has demonstrated a tremendous advantage over classical supercomputers. It is highly desirable to develop boson sampling algorithms for realistic scientific problems. In this work, we propose a hybrid quantum-classical sampling (HQCS) algorithm to calculate the optical spectrum for complex molecules considering Duschinsky rotation effects and anharmonicity.

View Article and Find Full Text PDF

Density matrix renormalization group (DMRG) and its time-dependent variants have found widespread applications in quantum chemistry, includingelectronic structure of complex bio-molecules, spectroscopy for molecular aggregates, and charge transport in bulk organic semiconductors. The underlying wavefunction ansatz for DMRG, matrix product state (MPS), requires mapping degrees of freedom (DOF) into a one-dimensional topology. DOF ordering becomes a crucial factor for DMRG accuracy.

View Article and Find Full Text PDF

It is well-known that thermally activated delayed fluorescence (TADF) is always generated from charge-transfer (CT) excited states in donor-acceptor (D-A) systems, which limits its application owing to a slow radiative process and a small stimulated emission cross section. Herein, a design strategy is proposed for realizing TADF from a locally excited (LE) state without a typical donor-acceptor type structure through controlling the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes between the lowest excited singlet with LE character and higher triplet states. Using this strategy, a boron difluoride derivative is theoretically predicted and experimentally synthesized to exhibit locally excited TADF (LE-TADF) with a fairly large radiative rate of 1.

View Article and Find Full Text PDF

It is a challenge to spontaneously harvest multiple clean sources from the environment for upgraded energy-converting systems. The ubiquitous moisture and sunlight in nature are attractive for sustainable power generation especially. A high-performance light-coordinated "moist-electric generator" (LMEG) based on the rational combination of a polyelectrolyte and a phytochrome is herein developed.

View Article and Find Full Text PDF

Phosphorescent organic light-emitting diodes (PhOLEDs) are leading candidates for displays or lighting technologies. Recently, blue phosphorescent tetradentate Pt(II) complexes have been attracting extensive attention due to their high phosphorescence quantum efficiency and numerous chemical structures on account of flexible ligand frames and modifications. Using quantum chemistry coupled with our thermal vibration correlation function (TVCF) formalism, we investigated the triplet excited state energy surface and the decay processes involving both direct vibrational relaxation and minimum energy crossing point (MECP) the transition state (TS) to the ground state (S) for 16 recently experimentally reported blue-emitting tetradentate Pt(II) emitters containing fused 5/6/6 metallocycles.

View Article and Find Full Text PDF

Organic phosphorescence, originating from triplet excitons, has potential for the development of new generation of organic optoelectronic materials. Herein, two heavy-atom-free room-temperature phosphorescent (RTP) electron acceptors with inherent long lifetime triplet exctions are first reported. These two 3D-fully conjugated rigid perylene imide (PDI) multimers, as the best nonfullerene wide-bandgap electron acceptors, exhibit a significantly elevated T of ≈2.

View Article and Find Full Text PDF

Strong intermolecular interactions in 2D organic molecular crystals arising from π-π stacking have been widely explored to achieve high thermal stability, high carrier mobility, and novel physical properties, which have already produced phenomenal progress. However, strong intermolecular interactions in 2D inorganic molecular crystals (2DIMCs) have rarely been investigated, severely limiting both the fundamental research in molecular physics and the potential applications of 2DIMCs for optoelectronics. Here, the effect of strong intermolecular interactions induced by unique short intermolecular Se-Se and P-Se contacts in 2D α-PSe nanoflakes is reported.

View Article and Find Full Text PDF

Novel functional AIEgen based on three compact bound aryl skeletons is designed and synthesized. This tri-aryl type luminogen (TA-Catechol) embedded with catechol moiety responds rapidly to series of boronic acids. Real-time visual and quantitative dual-mode detection method is established for the first time with modest precision and low detection limit (8.

View Article and Find Full Text PDF

Polaritons are hybrid light-matter states formed via strong coupling between excitons and photons inside a microcavity, leading to upper and lower polariton (LP) bands splitting from the exciton. The LP has been applied to reduce the energy barrier of the reverse intersystem crossing (rISC) process from T, harvesting triplet energy for fluorescence through thermally activated delayed fluorescence. The spin-orbit coupling between T and the excitonic part of the LP was considered as the origin for such an rISC transition.

View Article and Find Full Text PDF

We propose a method to calculate the spectral functions of many-body systems by Chebyshev expansion in the framework of matrix product states coupled with canonical orthogonalization (coCheMPS). The canonical orthogonalization can improve the accuracy and efficiency significantly because the orthogonalized Chebyshev vectors can provide an ideal basis for constructing the effective Hamiltonian in which the exact recurrence relation can be retained. In addition, not only the spectral function but also the excited states and eigenenergies can be directly calculated, which is usually impossible for other MPS-based methods such as time-dependent formalism or correction vector.

View Article and Find Full Text PDF