Uncertainty, time delays, and jumps often coexist in dynamic game problems due to the complexity of the environment. To address such issues, we can utilize uncertain delay differential equations with jumps to depict the dynamic changes in differential game problems that involve uncertain noise, delays, and jumps. In this paper, we first examine a linear quadratic differential game optimistic value problem within an uncertain environment characterized by jumps and delays.
View Article and Find Full Text PDFAs with probability theory, uncertainty theory has been developed, in recent years, to portray indeterminacy phenomena in various application scenarios. We are concerned, in this paper, with the convergence property of state trajectories to equilibrium states (or fixed points) of time delayed uncertain cellular neural networks driven by the Liu process. By applying the classical Banach's fixed-point theorem, we prove, under certain conditions, that the delayed uncertain cellular neural networks, concerned in this paper, have unique equilibrium states (or fixed points).
View Article and Find Full Text PDF