Stretchable electronics that prevalently adopt chemically inert metals as sensing layers and interconnect wires have enabled high-fidelity signal acquisition for on-skin applications. However, the weak interfacial interaction between inert metals and elastomers limit the tolerance of the device to external friction interferences. Here, we report an interfacial diffusion-induced cohesion strategy that utilizes hydrophilic polyurethane to wet gold (Au) grains and render them wrapped by strong hydrogen bonding, resulting in a high interfacial binding strength of 1017.
View Article and Find Full Text PDF