Publications by authors named "Zhifang Min"

In order to facilitate the leaf sequencing process in intensity modulated radiation therapy (IMRT), and design of a practical leaf sequencing algorithm, it is an important issue to smooth the planned fluence maps. The objective is to achieve both high-efficiency and high-precision dose delivering by considering characteristics of leaf sequencing process. The key factor which affects total number of monitor units for the leaf sequencing optimization process is the max flow value of the digraph which formulated from the fluence maps.

View Article and Find Full Text PDF

A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming.

View Article and Find Full Text PDF

A novel fluence map optimization model incorporating leaf sequencing constraints is proposed to overcome the drawbacks of the current objective inside smoothing models. Instead of adding a smoothing item to the objective function, we add the total number of monitor unit (TNMU) requirement directly to the constraints which serves as an important factor to balance the fluence map optimization and leaf sequencing optimization process at the same time. Consequently, we formulate the fluence map optimization models for the trailing (left) leaf synchronized, leading (right) leaf synchronized and the interleaf motion constrained non-synchronized leaf sweeping schemes, respectively.

View Article and Find Full Text PDF