Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.
View Article and Find Full Text PDFHuman activities have strongly impacted the global climate, and during the last few decades the global average temperature has risen at a rate faster than at any time on record. High latitude lakes in the subarctic and arctic permafrost regions have particularly been vulnerable given the "Arctic amplification" phenomenon and acceleration in warming rate in the northern hemisphere (0.2-0.
View Article and Find Full Text PDFDissolved organic matter (DOM) plays a significant role in aquatic biogeochemical processes and the carbon cycle. As global climate warming continues, it is anticipated that the composition of DOM in lakes will be altered. This could have significant ecological and environmental implications, particularly in frozen ground zones.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
May 2024
The spatiotemporal variability of lake partial carbon dioxide pressure (CO) introduces uncertainty into CO flux estimates at the lake water-air interface. Knowing the variation pattern of CO is important for obtaining accurate global estimation. Here we examine seasonal and trophic variations in lake CO based on 13 field campaigns conducted in Chinese lakes from 2017 to 2021.
View Article and Find Full Text PDFChlorophyll-a (Chla) in inland waters is one of the most significant optical parameters of aquatic ecosystem assessment, and long-term and daily Chla concentration monitoring has the potential to facilitate in early warning of algal blooms. MOD09 products have multiple observation advantages (higher temporal, spatial resolution and signal-to-noise ratio), and play an extremely important role in the remote sensing of water color. For developing a high accuracy machine learning model of remotely estimating Chla concentration in inland waters based on MOD09 products, this study proposed an assumption that the accuracy of Chla concentration retrieval will be improved after classifying water bodies into three groups by suspended particulate matter (SPM) concentration.
View Article and Find Full Text PDFSci Total Environ
November 2023
In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal.
View Article and Find Full Text PDFSci Total Environ
September 2023
Total suspended matter (TSM) as a critical water quality parameter is closely linked with nutrients, micropollutants, and heavy metals threatening the ecological health of aquatic ecosystems. However, the long-term spatiotemporal dynamics of lake TSM in China and their response to natural and anthropogenic factors are rarely explored. In this study, based on Landsat top-of-atmosphere (TOA) reflectance embedded in GEE and in-situ TSM data collecting in the periods 2014-2020, we developed a unified empirical model (R = 0.
View Article and Find Full Text PDFAnaerobic biological treatment was regarded as one of promising options for realizing concurrent WAS reduction, stabilization and bioenergy/bioresource recycle. But the relatively low treatment efficiency limited its spreading application toward larger scale considerably in China. Aimed at such barrier, this study offered a novel enhancing strategy for achieving high-efficiency of bioenergy/bioresource recycle from WAS anaerobic treatment via improving bioelectrogenesis/acidogenesis using sludge source-redox mediators (SSRMs).
View Article and Find Full Text PDFThe pollution or eutrophication affected by dissolved organic matter (DOM) composition and sources of inland waters had attracted concerns from the public and government in China. Combined with remote sensing techniques, the fluorescent DOM (FDOM) parameters accounted for the important part of optical constituent as chromophoric dissolved organic matter (CDOM) was a useful tool to trace relative DOM sources and assess the trophic states for large-scale regions comprehensively and timely. Here, the objective of this research is to calibrate and validate a general model based on Landsat 8 OLI product embedded in Google Earth Engine (GEE) for deriving humification index (HIX) based on EEMs in lakes across China.
View Article and Find Full Text PDFEnhancing anaerobic treatment efficiency of waste activated sludge (WAS) toward preferable resource recovery would be an important requirement for achieving carbon-emission reduction, biosolids minimization, stabilization and security concurrently. This study demonstrated the synergic effect of potassium ferrate (PF) and nitrite on prompting WAS solubilisation and acidogenic fermentation toward harvesting volatile fatty acids (VFAs). The results indicated the PF+NaNO co-pretreatment boosted 7.
View Article and Find Full Text PDFDissolved organic matter (DOM), a heterogeneous mixture of diverse compounds with different molecular weights, is crucial for the lake carbon cycle. The properties and concentration of DOM in lakes are closely related to anthropogenic activities, terrigenous input, and phytoplankton growth. Thus, the lake's trophic state, along with the above factors, has an important effect on DOM.
View Article and Find Full Text PDFTotal suspended matter (TSM), as an indicator of the concentration of fine materials in the water column including particulate nutrients, pollutants, and heavy metals, is widely used to monitor aquatic ecosystems. However, the long-term spatiotemporal variations of TSM in lakes across the Tibetan Plateau (TP) and their response to environmental factors are rarely explored. Accordingly, taking advantage of the Landsat top-of-atmosphere reflectance and in-situ data, an empirical model (R = 0.
View Article and Find Full Text PDFDissolved organic matter (DOM) plays an essential role in the global carbon biogeochemical cycle for aquatic ecosystems. The complexity of DOM compounds contributes to the accurate monitoring of its sources and compositions from large-scale patterns to microscopic molecular groups. Here, this study demonstrates the diverse sources and compositions for humic-rich lakes and protein-rich lakes for large-scale regions across China with the linkage to optical components and molecular high-resolution mass spectrometry properties.
View Article and Find Full Text PDFThe Trophic state index (TSI) is a vital parameter for aquatic ecosystem assessment. Estimating TSI by remote sensing is still a challenge due to the multivariate complexity of the eutrophication process. A comprehensive in situ spectral-biogeochemical dataset for 7 lakes in Northeast China was collected in October 2020.
View Article and Find Full Text PDFAlgal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend.
View Article and Find Full Text PDFSci Total Environ
February 2022
In this study, we empirically developed a robust model (the Root Mean Square Error (RMSE), bias, NSE and RE were 26.63 mg/L, -4.86 mg/L, 0.
View Article and Find Full Text PDFLake clarity, usually measured by Secchi disc depth (SDD), is a reliable proxy of lakes trophic status due to its close link with total suspended matter, chlorophyll-a, and nutrients. Trained with in-situ measured SDD and match-up Landsat images, we established various regression models to estimate SDD for global lakes. We selected a unified model which demonstrated good spatiotemporal transferability, and has potential to map SDD in different years with good quality of Landsat top-of-atmosphere (TOA) images embedded in Google Earth Engine (GEE).
View Article and Find Full Text PDFMore and more hyper-spectral satellites will be used to estimate total suspended matter (TSM) in waters instead of multi-spectral satellites, such as China's Gaofen-5 and Zhuhai-1. Although they have not been widely used because of the consistency of sampling and image time. Hence, the study based on measured hyper-spectroscopy is important for applying to hyper-spectral satellites.
View Article and Find Full Text PDFReservoirs were critical sources of drinking water for many large cities around the world, but progress in the development of large-scale monitoring protocols to obtain timely information about water quality had been hampered by the complex nature of inland waters and the various optical conditions exhibited by these aquatic ecosystems. In this study, we systematically investigated the absorption coefficient of different optically-active constituents (OACs) in 120 reservoirs of different trophic states across five eco-regions in China. The relationships were found between phytoplankton absorption coefficient at 675 nm (a (675)) and Chlorophyll a (Chla) concentration in different regions (R:0.
View Article and Find Full Text PDFThe Yellow River is the second largest river in China. Carbon transport by the Yellow River has significant influence on riverine carbon cycles in Asia. During the wet season, the riverine carbon was mainly found in dissolved form, i.
View Article and Find Full Text PDFWater clarity, denoted by the Secchi disk depth (SDD), is one of the most important indicators for monitoring water quality. In the Songhua River basin (SHRB), few studies have used Landsat to monitor long-term (3-4 decades) changes in lake SDD and explore the impact of natural and human factors on SDD interannual variation at the watershed scale. Lakes in the SHRB are of great significance to local populations.
View Article and Find Full Text PDFThe optical signature of chromophoric dissolved organic matter (CDOM) has been related to sources and composition of dissolved organic matter (DOM) in surface waters, but the spatial scope of previous research has been limited to single cities with no studies exploring patterns across gradients of development/industrialization or latitude. Using EEM (excitation emission matrix) techniques, a study was conducted to examine optical properties of CDOM in urban waters along a gradient of urban development (developed and undeveloped cities) and industries (primary, secondary, tertiary). The optical properties of CDOM were measured in 436 water samples collected from urbanized waterbodies spanning 93 cities across China.
View Article and Find Full Text PDFLandscape urbanization broadly alter watersheds ecosystems, yet the impact of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition and source is poorly understood. To systematically examine how DOM optical index and composition varied with urbanization, a unique long term observation dataset (4 years) of fluorescence excitation emission matrices (EEMs) was collected from two types of waters: urban waters and non-urban waters. Two humic-like DOM fluorescent components (C1 and C2) and one protein-like component (C3) were identified by parallel factor analysis (PARAFAC), and the results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land use surrounding each body of water.
View Article and Find Full Text PDFLake eutrophication has attracted the attention of the government and general public. Chlorophyll-a (Chl-a) is a key indicator of algal biomass and eutrophication. Many efforts have been devoted to establishing accurate algorithms for estimating Chl-a concentrations.
View Article and Find Full Text PDFAs important components of dissolved organic matter (DOM) in an aquatic environment, colored DOM (CDOM) and dissolved organic carbon (DOC) play an essential role in the carbon cycle of an inland aquatic system. Traditionally, CDOM and DOC in inland waters have been primarily determined using in situ observations and laboratory measurements. Most of past lake investigations on CDOM and DOC focused on easily accessible regions and covered a small fraction of lakes worldwide.
View Article and Find Full Text PDF