Publications by authors named "Zhidan Fu"

Background: Legumes, in the initial event of symbiosis, secrete flavonoids into the rhizosphere to attract rhizobia. This study was conducted to investigate the relationship between crop root exudates and soybean nodule development under intercropping patterns.

Method: A two years field experiments was carried out and combined with pot experiments to quantify the effects of planting mode, i.

View Article and Find Full Text PDF

Extensive foliar shedding in monoculture soybeans post-anthesis negatively impacts yield, whereas relay strip intercropping prolongs leaf area duration, enhancing productivity. However, little is known about the causes of leaf shedding in monoculture and its impact on physiological functions and plasticity of source and sink organs, we conducted a 4-year field experiment and leaf-removal simulations in relay intercropped soybeans. Results revealed that monoculture soybeans experienced severe self-shading and defoliation, while relay intercropping maintained better light conditions, supporting higher leaf area, nodule numbers, and carbon allocation.

View Article and Find Full Text PDF

Background: Cereal-legume intercropping provides a solution for achieving global food security, but the mechanism of greenhouse gas emissions and net ecosystem economic benefits of maize-soybean relay intercropping are poorly understood. Hence, we conducted a two-factor experiment to investigate the effects of cropping systems, containing maize-soybean relay intercropping (IMS), monoculture maize (M) and monoculture soybean (S), as well as three nitrogen levels at 0 (N0), 180 (N1), 240 (N2) kg N ha on crop grain yield, greenhouse gas emissions, soil carbon stock and net ecosystem economic benefit (NEEB).

Results: The average grain yield of IMS (7.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluated the effects of relay intercropping maize and soybean on NO emissions, soil properties, and crop yields compared to monoculture systems, through a two-factor randomized block trial involving different nitrogen (N) supply levels.
  • - Results indicated that relay intercropping significantly reduced cumulative NO emissions by 60.2% relative to monoculture, while maintaining yield benefits, especially when using reduced N supply.
  • - The intercropping system improved soil health by altering microbial communities and soil properties, ultimately leading to reduced NO production during soil nitrogen cycling.
View Article and Find Full Text PDF

Background: Soil is a key foundation of crop root growth. There are interactions between root system and soil in multiple ways. The present study aimed to further explore the response of root distribution and morphology to soil physical and chemical environment under maize (Zea mays L.

View Article and Find Full Text PDF

Intercropping can obtain yield advantages, but the mechanism of yield advantages of maize-legume intercropping is still unclear. Then, we explored the effects of cropping systems and N input on yield advantages in a two-year experiment. Cropping systems included monoculture maize (Zea mays L.

View Article and Find Full Text PDF

Applying Biochar (BC) or biofertilizers (BF) are potential approaches to reduce the nitrogen input and mitigate soil degradation in the maize soybean relay strip intercropping system (IS). In 2019 and 2020, a two-factor experiment was carried out to examine the effects of BC and BF on soil productivity and yield production in IS. 4 N input levels (8.

View Article and Find Full Text PDF

Sustainable agricultural development is urgently required to satisfy future food demands while decreasing environmental costs. Intercropping can increase per-unit farmland productivity through a resource-efficient utilization. However, the fate of N in intercropping systems remains unclear.

View Article and Find Full Text PDF