Eight previously undescribed solanapyrone analogues, sphasolanapyrones A-H (1-8), together with four structurally related known compounds (9-12) were obtained from the solid fermentation of Nigrospora sphaerica MZW-A, an endophytic fungus isolated from the fresh branches of the endangered conifer Pinus wangii. This study represents the first investigation on the secondary metabolites of endophytic fungus associated with this precious plant. The structures and absolute configurations of compounds 1-8 were elucidated by extensive spectroscopic analysis and electronic circular dichroism (ECD) calculations.
View Article and Find Full Text PDFConventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform.
View Article and Find Full Text PDFUrsolic acid (UA) is a food-plant-derived natural product which has good anticancer activities and low toxicity. However, the poor water solubility of UA limits its application in clinic. To address this issue, we developed a carrier-free nanodrug by self-assembly of UA.
View Article and Find Full Text PDFUnlabelled: Nanosized drug delivery systems (NDDS) with photothermal therapy (PTT) and photodynamic therapy (PDT) have been extensively exploited to improve the therapeutic performance and bio-safety of chemotherapeutic drugs in cancer. In this work, a carrier-free nanodrug was developed by co-assembly of the anti-cancer agent ursolic acid (UA), an asialoglycoprotein receptor (ASGPR), which can recognize the target molecule lactobionic acid (LA), and the near-infrared (NIR) probe dye indocyanine green (ICG) to form UA-LA-ICG NPs by a simple and green self-assembly approach. The UA-LA-ICG NPs had suitable stability, showed controlled release profile of UA drugs, and exhibited preferable temperature response (∼59.
View Article and Find Full Text PDFExploration of a green carrier to avoid potential systemic toxicity and the unclear metabolic mechanism of traditional nanocarriers is of high importance for cancer therapy. Hence, we developed a carrier-free nanosystem for co-delivery of dual anti-cancer drugs ursolic acid (UA) and doxorubicin (DOX) using a "green" and simple method. The co-assembled nanodrug was further modified with a HER2 aptamer by electrostatic interactions.
View Article and Find Full Text PDFThe anticancer properties of ursolic acid (UA) and metformin (Met) have been well demonstrated. However, whether these compounds can act synergistically to prevent and treat cancer is not known. We present in this study, the synergism between UA and Met, and that of a new codrug made of UA and Met (UA-Met) against several cancer cell lines.
View Article and Find Full Text PDFPhototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted great attention. However, applications of some photosensitizers remain an obstacle by their poor photostability. To enhance the treatment efficiency of photosensitizers and tumor theranostic effect, herein, we reported a novel carrier-free, theranostic nanodrug by self-assembly of small molecule dual anticancer drugs and photosensitizer for tumor targeting.
View Article and Find Full Text PDFUrsolic acid (UA), a natural triterpene acid, is a promising anti-cancer drug due to its inhibitory effect on tumor growth and metastasis. However, clinical translation of UA is limited by its poor water solubility and low bioavailability. To overcome these problems, herein an amphiphilic self-assembly nanodrug composed of UA, lactobionic acid (LA) and low-polyamidoamine (low-PAMAM) dendrimers is developed.
View Article and Find Full Text PDFCombination with chemotherapeutic drug and gene therapy has been proven highly effective in suppressing tumor progression. Hence, an asialoglycoprotein receptor (ASGPR)-targeting nanodrug delivery system based on mesoporous silica (MSN) nanocarrier for co-delivery of sorafenib (SO) and vascular endothelial growth factor (VEGF) targeted siRNA (siVEGF) to hepatocellular carcinoma (HCC) was successfully designed and synthesized. The structure of nanoparticles was characterized by IR, particle size, zeta potential and N2 adsorption-desorption.
View Article and Find Full Text PDFBackground: Metastasis is the key phase of cancer progression that characterizes a more advanced stage and a poorer prognosis. The majority of cancer fatalities occur as a consequence of metastasis.
Objective: Mifepristone (RU486), a chemical abortifacient, has recently been used in clinical trials for psychotic depression and cancer chemotherapy.
Yuanhuacine was found to have significant inhibitory activity against A-549 human lung cancer cells. However, there would be serious adverse toxicity effects after systemic administration of yuanhuacine, such as by oral and intravenous ways. In order to achieve better curative effect and to alleviate the adverse toxicity effects, we tried to deliver yuanhuacine directly into the lungs.
View Article and Find Full Text PDF