Dissolved organic matter (DOM) released from biochar may impact antibiotic mobility and environmental fate in subsurface environments. Here, DOM samples derived from biochars (BDOM) generated by pyrolyzing corn straw at 300, 450, and 600 °C were employed to elucidate the mobility characteristics of these organic substances and their influences on the transport of sulfamerazine (SMZ, a typical sulfonamide antibiotic) in soil porous media. The results demonstrated that BDOM produced at a lower pyrolysis temperature exhibited greater mobility owing to the weaker hydrophobic and H-bonding interactions between BDOM and soil particles.
View Article and Find Full Text PDFThe deposition of biomass-burning smoke water-soluble organic matter (BBS-WSOM) significantly affects the environmental behavior of heavy metals in aqueous environments. However, the interactions between BBS-WSOM and heavy metals at the molecular level remain unknown. This study combined FT-ICR-MS, fluorescence spectrum, FTIR, and two-dimensional correlation spectroscopy to anatomize the molecular characteristics of BBS-WSOM binding with Cd(II).
View Article and Find Full Text PDFThe environmental effects of biochar-derived organic carbon (BDOC) have attracted increasing attention. Nevertheless, it is unknown how BDOC might affect the natural attenuation of widely distributed chloroalkanes (e.g.
View Article and Find Full Text PDFThere is little information on how widespread surfactants affect the adsorption of norfloxacin (NOR) onto iron oxide minerals. In order to elucidate the effects of various surfactants on the adsorption characteristics of NOR onto typical iron oxides, we have explored the different influences of sodium dodecylbenzene sulfonate (SDBS), an anionic surfactant, and didodecyldimethylammonium bromide (DDAB), a cationic surfactant, on the interactions between NOR and ferrihydrite under different solution chemistry conditions. Interestingly, SDBS facilitated NOR adsorption, whereas DDAB inhibited NOR adsorption.
View Article and Find Full Text PDFThis study aims to understand how surfactants affect the mobility of tetracycline (TC), an antibiotic, through different aquifer media. Two anionic and cationic surfactants, sodium dodecylbenzene sulfonate (SDBS) and cetyltrimethyl ammonium bromide (CTAB), were used to study their influence on TC mobility through clean sand and humic acid (HA)-coated sand. HA coating inhibits TC mobility due to its strong interaction with TC.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2024
Low-molecular-weight aromatic acids (LWMAAs), a ubiquitous organic substance in natural systems, are important in controlling the environmental fate of potentially toxic metals. However, little is known about the effects of LWMAAs on the interactions between biochars and potentially toxic metals. Herein, the influences of three aromatic acids, including benzoic acid (BA), p-hydroxy benzoic acid (PHBA), and syringic acid (SA), on the adsorption of Cd onto biochars generated at three different pyrolysis temperatures under acidic and neutral conditions were examined.
View Article and Find Full Text PDFIdentification of the transport of sulfonamide antibiotics in soils facilitates a better understanding of the environmental fate and behaviors of these ubiquitous contaminants. In this study, the mobility properties of sulfanilamide (SNM, a typical sulfonamide antibiotic) through saturated soils with different physicochemical characteristics were investigated. The results showed that the physicochemical characteristics controlled SNM mobility.
View Article and Find Full Text PDFBiochar as an effective adsorbent can be used for the removal of triclocarban from wastewater. Biochar-derived dissolved organic carbon (BC-DOC) is an important carbonaceous component of biochar, nonetheless, its role in the interaction between biochar and triclocarban remains little known. Hence, in this study, sixteen biochars derived from pine sawdust and corn straw with different physico-chemical properties were produced in nitrogen-flow and air-limited atmospheres at 300-750 °C, and investigated the effect of BC-DOC on the interaction between biochar and triclocarban.
View Article and Find Full Text PDFEmpirical information about the transport properties of neonicotinoid pesticides through the soil as affected by the ubiquitous low molecular weight organic acids (LMWOAs) is lacking. Herein, the impacts of three LMWOAs with different molecular structures, including citric acid, acetic acid, and malic acid, on the mobility characteristics of two typical neonicotinoid pesticides (Dinotefuran (DTF) and Nitenpyram (NTP)) were explored. Interestingly, under acidic conditions, different mechanisms were involved in transporting DTF and NTP by adding exogenous LMWOAs.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2023
In the post-COVID-19 era, extensive quantities of antipyretic drugs are being haphazardly released from households into the environment, which may pose potential risks to ecological systems and human health. Identification of the mobility behaviors of these compounds in the subsurface environment is crucial to understand the environmental fate of these common contaminants. The mobility properties of three broad-spectrum antipyretic drugs, including ibuprofen (IBF), indometacin (IMC), and acetaminophen (APAP), in porous soil media, were investigated in this study.
View Article and Find Full Text PDFHerein, the influences of rhamnolipid (a typical biosurfactant) on oxytetracycline (OTC) transport in the porous media and their variations with the surface heterogeneities of the media (uncoated sand, goethite (Goe)-, and humic acid (HA)-coated sands) were explored. Compared to uncoated sand, goethite and HA coatings suppressed OTC mobility by increasing deposition sites. Interestingly, rhamnolipid-affected OTC transport strongly depended on the chemical heterogeneities of aquifers and biosurfactant concentrations.
View Article and Find Full Text PDFBiomass-pyrogenic smoke-derived dissolved organic matter (SDOMs) percolating into the underground environment profoundly impacts the transport and fate of environmental pollutants in groundwater systems. Herein, SDOMs were produced by pyrolyzing wheat straw at 300-900 °C to explore their transport properties and effects on Cu mobility in quartz sand porous media. The results indicated that SDOMs exhibited high mobility in saturated sand.
View Article and Find Full Text PDFTo date, little information is available regarding the impacts of the widespread anionic surfactants on the adsorption behaviors of antibiotics onto typical iron oxides. Herein, we have investigated the effects of two typical surfactants (sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)) on the adsorption of two widely used antibiotics (i.e.
View Article and Find Full Text PDFUnderstanding the mobility, retention, and fate of carbon dots (CDs) is critical for the risk management of this emerging carbon material. However, the influences of surfactants on CDs' transport through subsurface media are still poorly understood. Herein, column experiments were conducted to explore the different influences of an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the CDs' transport in water-saturated soil.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2022
The current state of knowledge on the transport behaviors of oxytetracycline (OTC, a typical tetracycline antibiotic) in porous media with heterogeneous chemical surfaces is inadequate. In this work, the mobility properties of OTC through saturated porous media with different chemical heterogeneities (, quartz sand, montmorillonite (MMT)-, humic acid (HA)-, and goethite (Goe)-coated sands) were investigated. In comparison with the mobility of OTC in the quartz sand, HA and goethite coatings inhibited the mobility of OTC, whereas montmorillonite coating enhanced OTC mobility.
View Article and Find Full Text PDFEnviron Sci Process Impacts
October 2022
There is currently a lack of scientific understanding regarding how bio-surfactants influence the mobility of graphene oxide (GO) through saturated porous media. In this study, the transport characteristics of GO through porous media with different heterogeneities (, quartz sand and goethite-coated sand) after the addition of saponin (a representative bio-surfactant) were investigated. The results demonstrated that saponin (3-10 mg L) promoted GO mobility in both types of porous media at pH 7.
View Article and Find Full Text PDFWater-soluble aerosol organic matters (WSAOMs) produced by biomass pyrolysis/burning can penetrate subsurface environment, and are anticipated to have a profound effect on the fate of contaminants in aquatic ecosystems. Herein, WSAOMs derived from corn straw (CS-WSAOMs) and pinewood sawdust (PW-WSAOMs) pyrolysis at 300-900 °C were utilized to investigate their mobility characteristics and impacts on the transport of heavy metal ions (i.e.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2022
Environ Sci Process Impacts
July 2022
To date, there is still very little knowledge about the combined effects of typical inorganic ligands and solution pH values on mobility characteristics of tetracycline (TC) through saturated aquifer media. In this work, three typical inorganic ligands (, phosphate, silicate, and iodate) were employed in the transport experiments. Generally, all the ligands promoted TC mobility over the pH range of 5.
View Article and Find Full Text PDFKnowledge of the mobility of tetracycline (TC) antibiotics in porous media is critical to understand their potential environmental influences. The transport characteristics of TC in sand columns with three different surfactants, including Tween 80, sodium dodecylbenzene sulfonate (SDBS), and didodecyldimethylammonium bromide (DDAB) under various conditions were investigated in this study. Results demonstrated that all surfactants enhanced TC transport under neutral conditions (10 mM NaCl at pH 7.
View Article and Find Full Text PDFThis study systemically investigated the characteristics of biochars derived from thermo-conversion of pine sawdust and wheat straw in air-limitation, CO, and N atmospheres at the temperatures of 300-750 °C. Meanwhile, their energy and C stability parameters were also evaluated here. The results showed that biochar produced in air-limitation had less yield, fixed C and bulk C, as well as more volatile matter and inorganic elements than that produced in CO and N.
View Article and Find Full Text PDFEnvironment-ubiquitous low-molecular-weight organic acids (LMWOAs) can interact with heavy metal ions and thus affect their mobility in subsurface aquifers. Herein, the effects of LMWOAs (including acetic acid, tartaric acid, malonic acid, oxalic acid, and citric acid) on the mobility of heavy metal ions (including Cd, Zn, Ni, Mn, and Co) in porous media were investigated to reveal the role of the stability constants of metal-LMWOA complexes in the mobility of heavy metal ions in porous media. The results showed that the mobility of different metal ions followed the order of Cd < Zn < Ni < Mn < Co despite of LMWOAs-free or LMWOAs-addition.
View Article and Find Full Text PDFInorganic ligands, ubiquitous in the natural environment, can interact with iron oxide minerals. To date, our knowledge regarding the effects of inorganic ligands on the adsorption properties of antibiotics onto iron oxides is still limited. In this work, the influences of different inorganic ligands (chosen iodate, silicate, and phosphate as the model ligands) on the adsorption of tetracycline (TC) onto hematite were examined.
View Article and Find Full Text PDFGiven the ubiquitous mineral (e.g., clays and iron oxides) playing critical roles in impacting the fate of antibiotics in the subsurface environment, the effects of two mineral colloids (i.
View Article and Find Full Text PDFDissolved organic carbon derived from biomass-pyrogenic smoke (SDOC) can be transported and deposited with atmospheric aerosols, enter aqueous environments, and possibly alter aqueous chemistry and quality. However, the characteristics of SDOC in aqueous environments and their effects on the fate of hydrophobic organic pollutants are poorly understood. In this study, we found that the emitted SDOC is 7.
View Article and Find Full Text PDF