Publications by authors named "Zhicheng R Qiu"

The trimethylguanosine (TMG) caps of small nuclear (sn) RNAs are synthesized by the enzyme Tgs1 via sequential methyl additions to the N2 atom of the m(7)G cap. Whereas TMG caps are inessential for Saccharomyces cerevisiae vegetative growth at 25° to 37°, tgs1∆ cells that lack TMG caps fail to thrive at 18°. The cold-sensitive defect correlates with ectopic stoichiometric association of nuclear cap-binding complex (CBC) with the residual m(7)G cap of the U1 snRNA and is suppressed fully by Cbc2 mutations that weaken cap binding.

View Article and Find Full Text PDF

Nuclear cap binding protein complex (CBC) is a heterodimer of a small subunit (Cbc2 in yeast) that binds the m(7)G cap and a large subunit (Sto1 in yeast) that interacts with karyopherins. In order to probe the role of cap recognition in yeast CBC function, we introduced alanine mutations (Y24A, F91A, D120A, D122A, R129A, and R133A) and N-terminal deletions (NΔ21 and NΔ42) in the cap-binding pocket of Cbc2. These lesions had no effect on vegetative growth, but they ameliorated the cold-sensitivity of tgs1Δ cells that lack trimethylguanosine caps (a phenotype attributed to ectopic association of CBC with the m(7)G cap of the normally TMG-capped U1 snRNA), thereby attesting to their impact on cap binding in vivo.

View Article and Find Full Text PDF

Meiosis-specific pre-mRNA splicing in budding yeast embraces multiple pre-mRNA targets grouped into regulons defined by their genetic requirements for vegetatively optional splicing factors (e.g., splicing enhancer Mer1 and the U1 snRNP subunit Nam8) or snRNA modifications (trimethylguanosine caps).

View Article and Find Full Text PDF

Tgs1 is the enzyme that converts m(7)G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis.

View Article and Find Full Text PDF

Nam8, a component of yeast U1 snRNP, is optional for mitotic growth but required during meiosis, because Nam8 collaborates with Mer1 to promote splicing of essential meiotic mRNAs AMA1, MER2 and MER3. Here, we identify SPO22 and PCH2 as novel targets of Nam8-dependent meiotic splicing. Whereas SPO22 splicing is co-dependent on Mer1, PCH2 is not.

View Article and Find Full Text PDF
Article Synopsis
  • A 2,2,7-trimethylguanosine (TMG) cap is found on important RNA types in eukaryotes, while TMG and 2,7-dimethylguanosine (DMG) caps are also seen in some alphaviruses.
  • Mimivirus, a large DNA virus, encodes enzymes that are crucial for RNA capping and translation but lacks the ability to convert DMG caps to TMG caps.
  • The study identifies a unique guanine-N2 methyltransferase (MimiTgs) in Mimivirus that shows promise for understanding viral mRNA capping and potentially enhancing protein synthesis in the host.
View Article and Find Full Text PDF