Toward the realization of ultralow-power-consumption on-chip optical interconnection, two types of membrane-based GaInAs/InP p-i-n photodiodes were fabricated on Si host substrates by using benzocyclobutene bonding. A responsivity of 0.95 A/W was estimated with a conventional waveguide-type photodiode with an ∼30-μm-long absorption region.
View Article and Find Full Text PDFWe propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g.
View Article and Find Full Text PDFWe analyzed two types of Mach-Zehnder plasmonic modulators on a silicon-on-insulator platform with a different furan-thiophene chromophore electro-optic polymer to compare to other reports. The metal-taper coupling structure and the metal-insulator-metal cross section in our design have been optimized based on the new material parameters. According to the simulation result, a modulator with a slot width of 50 nm and an on-off voltage of Vπ=20 V can be 21 μm long, leading to a total modulator loss of 15 dB, which is comparable to previously reported devices.
View Article and Find Full Text PDFPhotonic wire bonding (PWB) was used to achieve flexible chip-scale optical interconnection as a kind of 3D-freeform polymer waveguide based on the two-photon polymerization of SU-8. First, the fabrication conditions of PWB were determined for the two-photon absorption process, and the coupling structure between PWB and III-V optical components was numerically simulated in order to obtain high coupling efficiency. Then, using PWB, chip-to-chip optical transmission was realized between laser and detector chips located on a common Si substrate.
View Article and Find Full Text PDF