Despite considerable research on the environmental impacts of nanomaterials, we know little about how they influence interactions between species. Here, we investigated the acute (12 d) and chronic (64 d) toxicities of cerium oxide nanoparticles (CeO NPs) and bulk particles (0-200 mg/L) to three ciliated protist species (Loxocephalus sp., Paramecium aurelia, and Tetrahymena pyriformis) in single-, bi-, and multispecies microcosms.
View Article and Find Full Text PDFThe relationship between environmental productivity and species richness often varies among empirical studies, and despite much research, simple explanations for this phenomenon remain elusive. We investigated how phytoplankton and zooplankton coevolution shapes productivity-richness relationships in both phytoplankton and zooplankton, using a simple nutrient-phytoplankton-zooplankton model that incorporates size-dependent metabolic rates summarized from empirical studies. The model allowed comparisons of evolved species richness across productivity levels and at different evolutionary times.
View Article and Find Full Text PDFPredation is among the most important biotic factors influencing natural communities, yet we have a rather rudimentary understanding of its role in modulating metacommunity assembly. We experimentally examined the effects of two different predators (a generalist and a specialist) on metacommunity assembly, using protist microcosm metacommunities that varied in predator identity, dispersal among local communities and the history of species colonization into local communities. Generalist predation resulted in reduced α diversity and increased β diversity irrespective of dispersal, likely due to predation-induced stochastic extinction of different prey species in different local communities.
View Article and Find Full Text PDFDaytime warming and nighttime warming have the potential to influence plant community structure and ecosystem functions. However, their impacts on ecological stability remain largely unexplored. We conducted an eight-year field experiment to compare the effects of daytime and nighttime warming on the temporal stability of a temperate steppe in northern China.
View Article and Find Full Text PDFThe potential environmental impacts of engineered cerium oxide nanoparticles (CeO2 NPs) on aquatic organisms have remained largely unknown. Therefore, the laboratory study featured herein was performed to determine the fate of CeO2 NPs in an aquatic environment and their toxicity towards 14 different ciliated protist species at a specified population level. An investigation of 48 h aggregation kinetics in the Dryl's solution showed the CeO2 NPs to be relatively stable.
View Article and Find Full Text PDFA central goal of invasion biology is to elucidate mechanisms regulating community invasibility. Darwin's naturalization hypothesis, one of the oldest hypotheses in invasion biology, emphasizes the importance of phylogenetic relatedness (PR) between resident and invader species for predicting invasibility. Alternatively, a recent extension of the diversity-invasibility hypothesis predicts that phylogenetic diversity (PD) of resident communities influences invasibility.
View Article and Find Full Text PDFSpecies immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species, and thus influence the strength of priority effects. We tested this hypothesis using a laboratory microcosm experiment in which we established bacterial species pools with different levels of phylogenetic relatedness and manipulated the immigration history of species from each pool into microcosms.
View Article and Find Full Text PDFTo better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) < TiO(2) < CeO(2) < ZnO < SiO(2) < CuO < Fe(2)O(3) NPs.
View Article and Find Full Text PDFOne of the oldest ecological hypotheses, proposed by Darwin, suggests that the struggle for existence is stronger between more closely related species. Despite its long history, the validity of this phylogenetic limiting similarity hypothesis has rarely been examined. Here we provided a formal experimental test of the hypothesis using pairs of bacterivorous protist species in a multigenerational experiment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2010
Ecologists have long recognized the roles of competition and disturbance in shaping ecological communities, and the combinatorial effects of these two factors have been the subject of substantial ecological research. Nevertheless, it is still unclear whether competition remains as an important structuring force in habitats strongly influenced by disturbance. The conventional belief remains that the importance of competition decreases with increasing disturbance, but limited theory suggests otherwise.
View Article and Find Full Text PDFOne of the oldest ideas in invasion biology, known as Darwin's naturalization hypothesis, suggests that introduced species are more successful in communities in which their close relatives are absent. We conducted the first experimental test of this hypothesis in laboratory bacterial communities varying in phylogenetic relatedness between resident and invading species with and without a protist bacterivore. As predicted, invasion success increased with phylogenetic distance between the invading and the resident bacterial species in both the presence and the absence of protistan bacterivory.
View Article and Find Full Text PDFThe question of how species diversity affects ecological stability has long interested ecologists and yet remains largely unresolved. Historically, attempts to answer this question have been hampered by the presence of multiple potentially confounding stability concepts, confusion over responses at different levels of ecological organization, discrepancy between theoretical predictions, and, particularly, the paucity of empirical studies. Here we used meta-analyses to synthesize results of empirical studies published primarily in the past 2 decades on the relationship between species diversity and temporal stability.
View Article and Find Full Text PDF