Publications by authors named "Zhichao Pei"

Unlabelled: Platelet factor 4 (PF4) has been shown to regulate several viral infections. Our previous study demonstrated that PF4 inhibits the entry of enterovirus A 71 (EV71) and coxsackievirus A16 (CA16), which cause hand, foot, and mouth disease (HFMD). In this study, we report that PF4 also inhibits the circulating HFMD pathogen coxsackievirus A6 (CA6) and the re-emerging enterovirus D68 (EVD68).

View Article and Find Full Text PDF

Antibiotics have emerged as a significant class of organic pollutants, posing serious global challenges to both the environment and human health. To address the issue of water pollution by antibiotics, a ferrocene-based organic framework (FcMOF) with paramagnetism has been synthesized by hydrothermal complexation of ferrocene dicarboxylic acid with copper chloride and utilized for quick and efficient adsorption and degradation of antibiotics. The maximum adsorption capacity of TC was 736.

View Article and Find Full Text PDF

The increasing resistance of bacteria to antibiotics poses a serious threat to global human health. Herein, we have developed a thermal-accelerated biomacromolecular urease-driven MOF-based nanomotor (ZIF-8@PDA@ICG@Ur) mediated via NIR-intervened antimicrobial therapy. In this system, we have attempted for the first time to introduce an easy-to-operate light combination therapy strategy (only one light source is required) into an enzyme-driven MOF motor system to achieve antibiotic-free antibacterial therapy.

View Article and Find Full Text PDF

Free radical therapy, based on the sulfate radical derived from peroxymonosulfate, has recently been explored as a potential cancer treatment. However, while it is promising, its successful application is restricted by several limitations including the uncontrollable generation of free radicals and the instability in aqueous medium. Herein, we prepared LCP nanoparticles by using PMS as a core, the Co-coordination polymer (Co-CP) as a coating layer, and lactobionic acid as a targeting ligand for hepatoma carcinoma cells.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new type of nanoprodrug called BNN6@GBTC NPs, made from an amphiphilic prodrug (GBTC) and a nitric oxide donor (BNN6), which self-assemble into stable nanoparticles.
  • These nanoparticles can target HepG2 cancer cells specifically, thanks to galactose receptors on the cell surface, and generate reactive oxygen species (ROS) when exposed to light.
  • The combination of photodynamic therapy, chemotherapy through the release of camptothecin, and gas therapy using nitric oxide leads to a more effective cancer treatment while minimizing damage to healthy cells.
View Article and Find Full Text PDF

Contactless microscale tweezers are highly effective tools for manipulating, patterning, and assembling bioparticles. However, current tweezers are limited in their ability to comprehensively manipulate bioparticles, providing only partial control over the six fundamental motions (three translational and three rotational motions). This study presents a joint subarray acoustic tweezers platform that leverages acoustic radiation force and viscous torque to control the six fundamental motions of single bioparticles.

View Article and Find Full Text PDF

The supramolecular palladium complex G-Pd, formed self-assembly of the Pd-complex of guanidinium pillar[5]arene with Pd, was used to encapsulate doxorubicin to form G-Pd@DOX. The nanoparticles exhibit responsiveness to glutathione, controlled drug release, the ability to damage mitochondria, and potent anticancer activity while maintaining low toxicity towards normal cells. This work provides a good example for the application of pillararene-based palladium complexes in cancer therapy and is significant for the discovery of new medicines from supramolecular coordination complexes.

View Article and Find Full Text PDF

Apoptotic resistance of tumor often leads to poor efficacy from mono-therapy based on apoptosis. Cuproptosis, a new type of non-apoptotic cell death related to mitochondrial dysfunction, can alter metabolism and enhance ferroptosis, providing a promising strategy for effective synergistic cancer treatment. In this work, Cu-based nanoparticles (denoted as HA-ZCu) were successfully developed to improve anti-tumor efficacy by combining cuproptosis with enhanced ferroptosis, which was achieved by cuproptosis-induced glutathione synthesis disorder.

View Article and Find Full Text PDF

A near-infrared light-driven Janus nanomotor is constructed by collagenase-coated gold nanorods and chitosan-functionalized mesoporous organosilica nanoparticles with Mn as the bridging ion. The nanomotors with excellent motility and collagenase activity can potently penetrate into tumors to sufficiently activate innate immune responses, significantly enhancing anti-tumor immune efficacy .

View Article and Find Full Text PDF

Acoustic tweezers have gained substantial interest in biology, engineering, and materials science for their label-free, precise, contactless, and programmable manipulation of small objects. However, acoustic tweezers cannot independently manipulate multiple microparticles simultaneously. This study introduces acousto-dielectric tweezers capable of independently manipulating multiple microparticles and precise control over intercellular distances and cyclical cell pairing and separation for detailed cell-cell interaction analysis.

View Article and Find Full Text PDF

A biological nanoplatform (Gal-ANI@ZnAP NPs) was constructed based on a prodrug-skeletal metal-organic framework (MOF) using purine nucleobase analogue prodrug 6-allylthiopurine as a bioactive ligand, and functionalized with AIE fluorescent PARP inhibitor glycoconjugate for visualization therapy and synthetic lethal cancer therapy. This nanoplatform could actively target cancer cells, selectively release drugs in response to esterase/pH, and visualize drug uptake. studies revealed that Gal-ANI@ZnAP NPs increased the synthetic lethality in cancer cells by inducing DNA repair failure with the simultaneous targeting of PARP and nucleotide metabolism, thereby exhibiting a significant cancer-killing effect.

View Article and Find Full Text PDF

DNA damage-based therapy is widely used in cancer treatment, yet its therapeutic efficacy is constrained by the redox homeostasis and DNA damage repair mechanisms of tumor cells. To address these limitations and enhance the efficacy of DNA damage-based therapy, HA-CuH@MTX, a copper-histidine metal-organic complex (CuH) loaded with methotrexate (MTX) and modified with hyaluronic acid (HA), was developed to amplify the DNA damage induced. In vitro experiments demonstrated that the presence of both Cu and Cu in HA-CuH@MTX enables two-way regulated redox dyshomeostasis (RDH), achieved through Cu-catalyzed generation of •OH and Cu-mediated consumption of glutathione, thereby facilitating efficient DNA oxidative damage.

View Article and Find Full Text PDF

Surface acoustic wave (SAW)-enabled acoustofluidic technologies have recently atttracted increasing attention for applications in biology, chemistry, biophysics, and medicine. Most SAW acoustofluidic devices generate acoustic energy which is then transmitted into custom microfabricated polymer-based channels. There are limited studies on delivering this acoustic energy into convenient commercially-available glass tubes for manipulating particles and fluids.

View Article and Find Full Text PDF

The problem of antibiotic resistance seriously affects the treatment of bacterial infections, so there is an urgent need to develop novel antibiotic-independent antimicrobial strategies. Herein, a urease-driven bowl-like mesoporous polydopamine nanorobot (MPDA@ICG@Ur@Man) based on single-wavelength near-infrared (NIR) remote photothermal acceleration to achieve antibiotic-free phototherapy(photothermal therapy, PTT, plus photodynamic therapy, PDT) is first reported. The smart nanorobots can perform active movement by decomposing urea to produce carbon dioxide and ammonia.

View Article and Find Full Text PDF

A strategy for designing cancer therapeutic nanovaccines based on immunogenic cell death (ICD)-inducing therapeutic modalities is particularly attractive for optimal therapeutic efficacy. In this work, a highly effective cancer therapeutic nanovaccine (denoted as MPL@ICC) based on immunogenic photodynamic therapy (PDT) was rationally designed and fabricated. MPL@ICC was composed of a nanovehicle of MnO modified with a host-guest complex using amino pillar[6]arene and lactose-pyridine, a prodrug of isoniazid (INH), and chlorine e6 (Ce6).

View Article and Find Full Text PDF

Mild magnetic hyperthermia therapy (MMHT) holds great potential in treating deep-seated tumors, but its efficacy is impaired by the upregulation of heat shock proteins (HSPs) during the treatment process. Herein, Lac-FcMOF, a lactose derivative (Lac-NH ) modified paramagnetic metal-organic framework (FcMOF) with magnetic hyperthermia property and thermal stability, has been developed to enhance MMHT therapeutic efficacy. In vitro studies showed that Lac-FcMOF aggravates two-way regulated redox dyshomeostasis (RDH) via magnetothermal-accelerated ferricenium ions-mediated consumption of glutathione and ferrocene-catalyzed generation of ∙OH to induce oxidative damage and inhibit heat shock protein 70 (HSP70) synthesis, thus significantly enhancing the anti-cancer efficacy of MMHT.

View Article and Find Full Text PDF

(Hübner) and (Guenée) are the most devastating insect pests at the ear stage of maize, causing significant losses to the sweet corn industry. Pesticide control primarily relies on spraying during the flowering stage, but the effectiveness is inconsistent since larvae are beneath husks within hours to a day, making pesticide treatments simpler to avoid. Insufficient understanding of pest activity patterns impedes precise and efficient pesticide control.

View Article and Find Full Text PDF

Background: Working in a standing posture is considered to improve musculoskeletal comfort and can help enhance office workers' performance in the long term. However, there is a lack of a quantitative, real-time measure that reflects on whether office workers can immediately become more concentrated and work more efficiently when they switch to a standing posture.

Methods: To tackle this problem, this study proposed that the number of effective computer interactions could be used as a real-time indicator to measure the productivity of office workers whose work is primarily computer-based.

View Article and Find Full Text PDF
Article Synopsis
  • Coxsackievirus A10 (CA10) is linked to hand, foot, and mouth disease (HFMD), and this study analyzed its molecular epidemiology in Zhejiang Province between 2017 and 2022.
  • The research showed that most HFMD cases occurred in children under 3, with a peak in June, and identified an increase in CA10 cases possibly due to the use of EV71 vaccines.
  • The study isolated 90 CA10 strains, finding them grouped in two genogroups, indicating the need for improved surveillance and ongoing research for effective HFMD prevention.
View Article and Find Full Text PDF

Multidrug resistance (MDR) which is often related to the overexpression of P-glycoprotein (P-gp) in drug-resistant cancer cells has been a major problem faced by current cancer chemotherapy. Reversing P-gp-related MDR by disrupting tumor redox homeostasis that regulates the expression of P-gp is a promising strategy. In this work, a hyaluronic acid (HA) modified nanoscale cuprous metal-organic complex (HA-CuTT) was developed to reverse P-gp-related MDR via two-way regulated redox dyshomeostasis, which was achieved by both Cu-catalyzed generation of •OH and disulfide bonds-mediated depletion of glutathione (GSH).

View Article and Find Full Text PDF

A three-in-one self-assembled metallo-nanophotosensitizer system (NLCD) was constructed by cooperative coordination of amphiphilic L-arginine-modified photosensitizer NBS-L-Arg and DOX in the presence of Cu the synergy of coordination, hydrophobic, and π-π stacking interactions. The resulting NLCD NPs possessed uniform size, well-defined nanosphere structure, and GSH-responsive ability. studies exhibited that NLCD NPs integrating photodynamic/chemodynamic/chemo multimodal therapy achieved an enhanced therapeutic effect.

View Article and Find Full Text PDF

A supramolecular nanoprodrug (DOX@GP5⊃Pro-NFA) was constructed based on the host-guest complexation of chloride channel blocker prodrug (Pro-NFA) and glycosylated pillar[5]arene (GP5), which could target tumor cells galactose and release DOX/NFA responsively under esterase stimulation. studies revealed that this supramolecular nanoprodrug can overcome drug resistance through inhibiting chloride channels as well as inhibiting the migration of HepG2/ADR cells. This strategy can therefore achieve enhanced potency in chemotherapy through reverse chemoresistance.

View Article and Find Full Text PDF

An L-arginine-functionalized pillar[5]arene-based supramolecular photosensitizer LAP5⊃NBSPD was constructed by host-guest interactions, which could self-assemble into nano-micelles to achieve effective delivery and selective release of LAP5 and NBS in cancer cells. studies revealed that LAP5⊃NBSPD NPs exhibited excellent cancer cell membrane disruption and ROS generation properties, which provides a novel route for synergistically enhanced cancer therapeutic effectiveness.

View Article and Find Full Text PDF

The intrinsic biophysical properties of cells, such as mechanical, acoustic, and electrical properties, are valuable indicators of a cell's function and state. However, traditional single-cell biophysical characterization methods are hindered by limited measurable properties, time-consuming procedures, and complex system setups. This study presents acousto-dielectric tweezers that leverage the balance between controllable acoustophoretic and dielectrophoretic forces applied on cells through surface acoustic waves and alternating current electric fields, respectively.

View Article and Find Full Text PDF

Covalently bridged pillararene-based polymers (CBPPs) are a special class of macrocycle-based polymers in which multiple pillararene monomers are attached to the polymer structures by covalent bonds. Owing to the unique molecular structures including the connection components or the spatial structures, CBPPs have become increasingly popular in applications ranging from environmental science to biomedical science. In this review, CBPPs are divided into three types (linear polymers, grafted polymers, and cross-linked polymers) according to their structural characteristics and described from the perspective of synthesis methods comprehensively.

View Article and Find Full Text PDF