Publications by authors named "Zhicai Wu"

To address rotor imbalance and misalignment in oil transfer pumps, an innovative diagnostic framework using Residual Network (ResNet) is proposed. The model incorporates advanced signal processing algorithms and strategic sensor placement to enhance diagnostic efficacy. A fault simulation test rig captured vibration signals from eight key measurement points on the pump.

View Article and Find Full Text PDF

Mutant isocitrate dehydrogenase 1 (IDH1) has been identified as an attractive oncology target for which >70% of grade II and III gliomas and ∼10% of acute myeloid leukemia (AML) harbor somatic IDH1 mutations. These mutations confer a neomorphic gain of function, leading to the production of the oncometabolite ()-2-hydroxyglutarate (2-HG). We identified and developed a potent, selective, and orally bioavailable brain-penetrant tricyclic diazepine scaffold that inhibits mutant IDH1.

View Article and Find Full Text PDF

Vorapaxar is an approved drug for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. Subsequent to the discovery of Vorapaxar, medicinal chemistry efforts were continued to identify structurally differentiated leads. Toward this goal, extensive structure-activity relationship studies using a C-ring-truncated version of Vorapaxar culminated in the discovery of three leads, represented as , , and .

View Article and Find Full Text PDF

This research aims to explore the reality of the soundscape preferences of Chinese urban residents in general public landscape in the post-pandemic era, and then to propose design recommendations to meet the practical needs of people's preferences for landscape-especially soundscapes-in the post-pandemic era. In this study, we utilized the subjective evaluation method to conduct an online questionnaire in 29 Chinese provinces which experienced severe pandemic caseloads and collected 860 valid responses. This study revealed people's preference for landscape and soundscape in the post-pandemic era.

View Article and Find Full Text PDF

The parallel medicinal chemistry (PMC) was effectively applied to accelerate the optimization of diacylglycerol O-acyltransferase I (DGAT-1) inhibitors. Through a highly collaborative and iterative library design, synthesis and testing, a benzimidazole lead was rapidly and systematically advanced to a highly potent, selective and bioavailable DGAT1 inhibitor with the potential for further development.

View Article and Find Full Text PDF

Previously disclosed benzimidazole-based DGAT1 inhibitors containing a cyclohexane carboxylic acid moiety suffer from isomerization at the alpha position of the carboxylic acid group, generating active metabolites which exhibit DGAT1 inhibition comparable to the corresponding parent compounds. In this report, we describe the design, synthesis and profiling of benzimidazole-based DGAT1 inhibitors with a [3.1.

View Article and Find Full Text PDF

SAR in the previously described spirocyclic ROMK inhibitor series was further evolved from lead 4 by modification of the spirocyclic core and identification of novel right-side pharmacophores. In this process, it was discovered that the spiropyrrolidinone core with the carbonyl group α to the spirocenter was preferred for potent ROMK activity. Efforts aimed at decreasing hERG affinity within the series led to the discovery of multiple novel right-hand pharmacophores including 3-methoxythiadiazole, 2-methoxypyrimidine, and pyridazinone.

View Article and Find Full Text PDF

Miniaturization and parallel processing play an important role in the evolution of many technologies. We demonstrate the application of miniaturized high-throughput experimentation methods to resolve synthetic chemistry challenges on the frontlines of a lead optimization effort to develop diacylglycerol acyltransferase (DGAT1) inhibitors. Reactions were performed on ∼1 mg scale using glass microvials providing a miniaturized high-throughput experimentation capability that was used to study a challenging SAr reaction.

View Article and Find Full Text PDF

Selective inhibition of Kv1.5, which underlies the ultra-rapid delayed rectifier current, I, has been pursued as a treatment for atrial fibrillation. Here we describe the discovery of MK-1832, a Kv1.

View Article and Find Full Text PDF

We report SAR studies on a novel non-peptidic somatostatin receptor 3 (SSTR3) agonist lead series derived from (4-phenyl-1H-imidazol-2-yl)methanamine. This effort led to the discovery of a highly potent low molecular weight SSTR3 agonist 5c (EC50=5.2 nM, MW=359).

View Article and Find Full Text PDF

We report the discovery of a novel series of DGAT1 inhibitors in the benzimidazole class with a piperdinyl-oxy-cyclohexanecarboxylic acid moiety. This novel series possesses significantly improved selectivity against the A2A receptor, no ACAT1 off-target activity at 10 μM, and higher aqueous solubility and free fraction in plasma as compared to the previously reported pyridyl-oxy-cyclohexanecarboxylic acid series. In particular, 5B was shown to possess an excellent selectivity profile by screening it against a panel of more than 100 biological targets.

View Article and Find Full Text PDF

A novel class of small-molecule, highly potent, and subtype-selective somatostatin SST3 agonists was discovered through modification of a SST3 antagonist. As an example, (1R,2S)-9 demonstrated not only potent in vitro SST3 agonist activity but also in vivo SST3 agonist activity in a mouse oral glucose tolerance test (OGTT). These agonists may be useful reagents for studying the physiological roles of the SST3 receptor and may potentially be useful as therapeutic agents.

View Article and Find Full Text PDF

We report the design and synthesis of a series of novel DGAT1 inhibitors in the benzimidazole class with a pyridyl-oxy-cyclohexanecarboxylic acid moiety. In particular, compound 11A is a potent DGAT1 inhibitor with excellent selectivity against ACAT1. Compound 11A significantly reduces triglyceride excursion in lipid tolerance tests (LTT) in both mice and dogs at low plasma exposure.

View Article and Find Full Text PDF

Novel potent and selective mineralocorticoid receptor antagonists were identified, utilizing heterocyclic amide replacements in the oxazolidinedione series. Structure-activity relationship (SAR) efforts focused on improving lipophilic ligand efficiency (LLE) while maintaining nuclear hormone receptor selectivity and reasonable pharmacokinetic profiles.

View Article and Find Full Text PDF

Novel oxazolidinedione analogs were discovered as potent and selective mineralocorticoid receptor (MR) antagonists. Structure-activity relationship (SAR) studies were focused on improving the potency and microsomal stability. Selected compounds demonstrated excellent MR activity, reasonable nuclear hormone receptor selectivity, and acceptable rat pharmacokinetics.

View Article and Find Full Text PDF

Efforts were dedicated to develop potent and brain penetrant prolylcarboxypeptidase (PrCP) inhibitors by replacing the amide group of original leads 1 and 2 with heterocycles. Aminopyrimidines including compound 32a were identified to display good PrCP inhibitory activity (32a, IC(50)=43 nM) and impressive ability to penetrate brain in mice (brain/plasma ratio: 1.4).

View Article and Find Full Text PDF

Efforts to modify the central proline portion of lead compound 4 lead to the discovery of novel prolylcarboxypeptidase (PrCP) inhibitors. Especially, replacement with alanine afforded compound 19 displaying more potent human and mouse PrCP inhibitory activity than 4 and an overall comparable profile.

View Article and Find Full Text PDF

A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects.

View Article and Find Full Text PDF

This paper describes the rapid assembly of four different classes of potent Akt inhibitors from a common intermediate. Among them, a pyridopyrimidine series displayed the best intrinsic and cell potency against Akt1 and Akt2. This series also showed a promising pharmacokinetic profile and excellent selectivity over other closely related kinases.

View Article and Find Full Text PDF

This letter shows inhibitor SAR on a pyridine series of allosteric Akt inhibitors to optimize enzymatic and cellular potency. We have optimized 2,3,5-trisubstituted pyridines to give potent Akt1 and Akt2 inhibitors in both enzyme and cell based assays. In addition, we will also highlight the pharmacokinetic profile of an optimized inhibitor that has low clearance and long half-life in dogs.

View Article and Find Full Text PDF

This communication reports a new synthetic route of pyridopyrimidines to facilitate their structural optimization in a library fashion and describes the development of pyridopyrimidines that have excellent enzymatic and cell potency against Akt1 and Akt2. This series also shows a high level of selectivity over other closely related kinases and significantly improved caspase-3 activity with the more optimized compounds.

View Article and Find Full Text PDF

3,7-Diarylsubstituted imidazopyridines were designed and developed as a new class of KDR kinase inhibitors. A variety of imidazopyridines were synthesized and potent inhibitors of KDR kinase activity were identified with good aqueous solubility.

View Article and Find Full Text PDF

A practical total synthesis of 26-(1,3-dioxolanyl)-12,13-desoxyepothilone B (26-dioxolanyl dEpoB) was accomplished in a highly convergent manner. A novel sequence was developed to produce the vinyl iodide segment 17 in high enantiomeric excess, which was used in a key B-alkyl Suzuki merger. Subsequently, a Yamaguchi macrocyclization formed the core lactone, while a selective oxidation and a late stage Noyori acetalization incorporated the dioxolane functionality.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: