Publications by authors named "Zhicai Shi"

Protein degradation using proteolysis targeting chimeras (PROTACs) represents a promising therapeutic strategy. PROTACs are heterobifunctional molecules that consist of a target-binding moiety and an E3 ligase binding moiety, connected by a linker. These fragments are frequently united via amide bonds.

View Article and Find Full Text PDF

The bile salt export pump (BSEP) assay is widely used to evaluate the potential for drug-induced liver injury (DILI) early in the drug discovery process. While traditional liquid chromatography-mass spectrometry (LC-MS)-based approaches have been utilized for BSEP activity testing, they have intrinsic limitations in either throughput or the requirement for sample preparation and are difficult to scale up in order to screen drug candidates. Here we demonstrate the use of two different high-throughput MS methods based on solid-phase extraction (SPE) and desorption electrospray ionization (DESI) for high-throughput BSEP activity assessment in a label-free manner, with minimal needs for sample workup, at sampling rates of ∼11 and ∼5.

View Article and Find Full Text PDF

On-DNA carboxylic acids are important synthetic intermediates in the synthesis of DNA-encoded library (DEL) structures. Herein, we report an oxoammonium salt-mediated, room temperature, solution-phase oxidation of DNA-linked primary alcohols into carboxylic acids. This method exhibits a wide substrate scope, encompassing aliphatic, benzylic, and heterobenzylic alcohols, and is compatible with DEL encoding strategies.

View Article and Find Full Text PDF

DNA-encoded libraries (DELs) are a key technology for identifying small-molecule hits in both the pharmaceutical industry and academia, but their chemical diversity is largely limited to water-compatible reactions to aid in the solubility and integrity of encoding DNA tags. To broaden the DEL chemical space, we present a workflow utilizing DNA-cationic surfactant complexation that enables dissolution and reactions on-DNA in anhydrous organic solvents. We demonstrate its utility by developing DEL-compatible photoredox decarboxylative C(sp)-C(sp) coupling under water-free conditions.

View Article and Find Full Text PDF

A novel interlaminar elastic screw spacer technique was designed to maintain lumbar mobility in treating lumbar degenerative diseases. A validated finite element model of L4/5 was used to establish an ISES-1/2 model and an ISES-1/3 model based on different insertion points, a unilateral fixation model and a bilateral fixed model based on different fixation methods, and a Coflex-F model based on different implants. The elastic rods were used to fix screws.

View Article and Find Full Text PDF

Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation.

View Article and Find Full Text PDF

Background: Spinal osteoporosis is a prevalent health condition characterized by the thinning of bone tissues in the spine, increasing the risk of fractures. Given its high incidence, especially among older populations, it is critical to have accurate and effective predictive models for fracture risk. Traditionally, clinicians have relied on a combination of factors such as demographics, clinical attributes, and radiological characteristics to predict fracture risk in these patients.

View Article and Find Full Text PDF

Although bone mesenchymal stem cell (BMSC) transplantation has been applied to the treatment of spinal cord injury (SCI), the effect is unsatisfactory due to the specific microenvironment (inflammation and oxidative stress) in the SCI area, which leads to the low survival rate of transplanted cells. Thus, additional strategies are required to improve the efficacy of transplanted cells in the treatment of SCI. Hydrogen possesses antioxidant and anti-inflammatory properties.

View Article and Find Full Text PDF

Objective: Hypoxia can promote stem cell proliferation and migration through HIF-1α. Hypoxia can regulate cellular endoplasmic reticulum (ER) stress. Some studies have reported the relationship among hypoxia, HIF-α, and ER stress, however, while little is known about HIF-α and ER stress in ADSCs under hypoxic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • NKG2D is a receptor that helps activate immune responses against infections and stress but can also contribute to chronic inflammation and autoimmune diseases, making it a target for new treatments.
  • The study outlines a strategy for identifying small molecules that can inhibit NKG2D's protein interactions via a unique mechanism that alters the receptor's structure.
  • Researchers used various biochemical methods and drug design techniques to enhance the effectiveness and properties of one series of inhibitors, showing it's feasible to disrupt the NKG2D interaction with its ligands through allosteric modulation.
View Article and Find Full Text PDF

Artificial Intelligence is revolutionizing many aspects of the pharmaceutical industry. Deep learning models are now routinely applied to guide drug discovery projects leading to faster and improved findings, but there are still many tasks with enormous unrealized potential. One such task is the reaction yield prediction.

View Article and Find Full Text PDF

DNA-encoded library (DEL) screens have become a key technology to find small molecule binders to biological targets for drug discovery applications. The development of new DNA-compatible chemistries to expand the accessible DEL chemical space is imperative to enhance screen success across broad target classes and modalities. Additionally, reactions that use commonly available building blocks as well as those that enable the fsp of library members to be increased would have high impact for accessing diverse drug-like structures.

View Article and Find Full Text PDF

Purpose: The short rod technique (SRT) is a novel method for lumbar pedicle screw placement to reduce surgical trauma and avoid damage to the facet joint and articular surface. The core concept is to change the entry point and angle of the screw on the vertebrae at both ends in the sagittal plane to shorten the length of the longitudinal rods. The purpose of this study is to determine the sagittal screw angle (SSA) and its safe Maximum (MAX) value on each lumbar vertebra for the SRT and to observe the shortening effect on the longitudinal rods.

View Article and Find Full Text PDF

The purpose of this study was to analyze the stability and instrument-related complications associated with fixation of the lumbar spine using the Short-Rod (SR) technique. Using finite element analysis, this study assessed the stability of a bilateral lumbar fixation system when inserting the pedicle screws at angles of 10°, 15°, and 20° to the endplate in the sagittal plane. Using the most stable construct with a screw angle, the model was then assessed with different rod lengths of 25, 30, 35, and 45 mm.

View Article and Find Full Text PDF

A platform to accelerate optimization of proteolysis targeting chimeras (PROTACs) has been developed using a direct-to-biology (D2B) approach with a focus on linker effects. A large number of linker analogs-with varying length, polarity, and rigidity-were rapidly prepared and characterized in four cell-based assays by streamlining time-consuming steps in synthesis and purification. The expansive dataset informs on linker structure-activity relationships (SAR) for in-cell E3 ligase target engagement, degradation, permeability, and cell toxicity.

View Article and Find Full Text PDF

Developing new DNA-compatible reactions is key to expanding the accessible chemical space of DNA-encoded library (DEL) technology. Here we disclose the first report of a DNA-compatible carbonylative Suzuki coupling of DNA-conjugated (hetero)aryl iodides with (hetero)aryl boronic acids to access di(hetero)aryl ketones, a valuable structural motif present within several approved or clinically advanced small molecules. The reported DNA-compatible, Pd(OAc)-mediated system is mild, uses a robust protocol, has a wide substrate scope for both coupling partners, is suitable for large-scale DEL productions, and provides a source of previously unexplored chemical matter for DEL screens.

View Article and Find Full Text PDF

Study Design: Retrospective study.

Objective: Current studies suggested that the posterior cervical deep muscles should be preserved during the atlantoaxial posterior approach. This study aimed to modify the conventional temporary posterior fixation by preserving the semispinalis cervicis and to evaluate the radiographic and clinical outcomes compared with the conventional technique.

View Article and Find Full Text PDF

DNA-encoded chemical library (DEL) screens are a powerful hit generation tool in drug discovery, but the diversity of DEL chemical matter is dependent on developing robust reaction conditions that may be used on hundreds to millions of substrate combinations and that are compatible with the platform. Here, we disclose the first report of a general, aqueous, DNA-compatible C-N coupling condition that can now couple aliphatic amines, in addition to (hetero)aromatic amines, with a variety of (hetero)aryl iodides, bromides, and chlorides. The reported BippyPhos-Pd(OAc) catalyst system has a wide substrate scope for both coupling partners, is operationally feasible for large scale DEL productions, uses common DEL building block solution stocks, and enables an expansion of DEL-accessible, drug-like chemical space.

View Article and Find Full Text PDF

Background: Scoliosis is a type of spinal deformity, which is harmful to a person's health. In severe cases, it can trigger paralysis or death. The measurement of Cobb angle plays an essential role in assessing the severity of scoliosis.

View Article and Find Full Text PDF

Implicit authentication mechanisms are expected to prevent security and privacy threats for mobile devices using behavior modeling. However, recently, researchers have demonstrated that the performance of behavioral biometrics is insufficiently accurate. Furthermore, the unique characteristics of mobile devices, such as limited storage and energy, make it subject to constrained capacity of data collection and processing.

View Article and Find Full Text PDF

We report two cholesterol-modified oligonucleotides for use as internal controls for on-DNA reactions during the pooled stages of a DNA-encoded chemical library (DECL) synthesis. As these cholesterol-tagged oligonucleotides are chromatographically separable from normal DECL intermediates, they can be directly monitored by mass spectrometry to track reaction progression within a complex pool of DNA. We observed similar product conversions for reactions on substrates linked to a standard DECL DNA headpiece, to the cholesterol-modified oligonucleotides, and to the cholesterol-modified oligonucleotides while in the presence of pooled DECL synthetic intermediates-validating their use as a representative control.

View Article and Find Full Text PDF

Objective: To summarize the research progress in creep characteristics of lumbar intervertebral disc.

Methods: The relevant literature at home and abroad was systematically searched. Then, the concept and structural basis of lumbar disc creep, the description of creep characteristics, and the latest progress of its influencing factors were summarized and analyzed.

View Article and Find Full Text PDF

Increasing evidence suggests that postmenopausal osteoporosis (PMO), a severe disturbance, imposes heavy physical, psychosocial, and financial burdens and dramatically influences the quality of life of postmenopausal women. Circular RNAs (circRNAs) and microRNAs (miRs) play important roles in the occurrence and development of PMO. However, the roles of circRNAs and miRs in osteoporosis regulation still need to be further investigated.

View Article and Find Full Text PDF

Background: It has been generally recommended that platelet function may recover after the recommended 5-day discontinuation period prior to operation. The technique of thromboelastography has been demonstrated to monitor intraoperative platelet function in liver transplantation and coronary bypass surgery. However, there is a dearth of literature that addresses the utility of thromboelastography in aspirin-treated patients undergoing fusion.

View Article and Find Full Text PDF