Background: High-altitude exposure has been associated with an increased risk of hyperuricemia (HU) and gout, though the underlying mechanisms remain poorly understood.
Methods: We conducted a comprehensive analysis of the serum metabolome and phenome in both discovery and validation cohorts of Han Chinese individuals who underwent long-term moderate-altitude exposure (∼12 months), as well as in an independent cohort consisting of local Han Chinese and Tibetans residing in Nyingchi (>5 years). Beta-Alanine intervention was applied in hypoxanthine and potassium oxonate-induced in vitro and in vivo experiments.
The Single-probe single-cell mass spectrometry (SCMS) is an innovative analytical technique designed for metabolomic profiling, offering a miniaturized, multifunctional device capable of direct coupling to mass spectrometers. It is an ambient technique leveraging microscale sampling and nanoelectrospray ionization (nanoESI), enabling the analysis of cells in their native environments without the need for extensive sample preparation. Due to its miniaturized design and versatility, this device allows for applications in diverse research areas, including single-cell metabolomics, quantification of target molecules in single cell, MS imaging (MSI) of tissue sections, and investigation of extracellular molecules in live single spheroids.
View Article and Find Full Text PDFCancer stem-like cells (CSCs), featuring high tumorigenicity and invasiveness, are one of the critical factors leading to the failure of clinical cancer treatment such as metastasis and recurrence. However, current strategies suffer from the low stemness-inhibiting efficacy on CSCs by conventional molecular agents and the poor lethal effects against bulk tumor cells. Here we engineer a coordination nanomedicine by 2,5-dihydroxyterephthalic acid (DHT) complexing zinc ions (Zn) as a double-effect nanodisrupter of tumor iron (Fe) and redox homeostasis for catalysis-boosted tumor therapy with stemness inhibition.
View Article and Find Full Text PDFChronic, low-grade inflammation is a hallmark of aging and various age-related diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). The prevalence of metabolic dysfunction-associated steatohepatitis (MASH), an advanced form of MASLD, increases with age and contributes to morbidity and mortality among the elderly. This study investigates the role of necroptosis, a programmed cell death pathway that promotes inflammation, in liver inflammaging and age-associated MASLD by utilizing genetic ablation models of two key necroptosis proteins, Mlkl or Ripk3.
View Article and Find Full Text PDFMany applications of plasmonic nanoparticles require precise control of their optical properties that are governed by nanoparticle dimensions, shape, morphology and composition. Finding reaction conditions for the synthesis of nanoparticles with targeted characteristics is a time-consuming and resource-intensive trial-and-error process, however closed-loop nanoparticle synthesis enables the accelerated exploration of large chemical spaces without human intervention. Here, we introduce the Autonomous Fluidic Identification and Optimization Nanochemistry (AFION) self-driving lab that integrates a microfluidic reactor, in-flow spectroscopic nanoparticle characterization, and machine learning for the exploration and optimization of the multidimensional chemical space for the photochemical synthesis of plasmonic nanoparticles.
View Article and Find Full Text PDFEmerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.
View Article and Find Full Text PDFIntroduction: This study aimed to investigate the current level of knowledge about lung cancer among urban residents in Sichuan Province and to assess its influence on their willingness to choose county-level or lower-level medical institutions for cancer screening.
Methods: A total of 31,184 urban residents of Sichuan Province were included in the cross-sectional study. Binary logistic regression and propensity score matching (PSM) were used to assess the influence effect.
Purpose: Melanin's pivotal role in skin protection and its overproduction leading to hyperpigmentation disorders highlight the necessity of regulating melanogenesis, with autophagy identified as a key degradation pathway. Imperatorin, a compound from Angelica dahurica, has been revealed to reduce melanin in epidermal keratinocytes, with the specific effects and mechanisms unknown. The purpose of this study was to investigate the mechanism by which imperatorin, reduces melanin production in HaCaT cells, with a focus on its potential role in promoting autophagy and regulating the PI3K/Akt signaling pathway.
View Article and Find Full Text PDFBackground: In a special period of lack of offline social interaction (pandemic), the mentality of older people is changing quietly. This study aims to dissect the impact of these changes on their mental health.
Method: Utilizing data from the China Health and Retirement Longitudinal Study (CHARLS 2020), this research included 7,784 participants aged over 60 years.
Background: The utilization of extracorporeal liver support systems is increasingly prevalent for the management of acute-on-chronic liver failure in clinical settings. Yet, the efficacy of these interventions in terms of tangible clinical benefits for patients remains a matter of debate, underscoring the need for meta-analysis.
Methods: An updated meta-analysis was performed to elucidate the relationship between the application of extracorporeal liver support versus standard pharmacological treatment and the prognostic endpoints of patient survival, specifically assessing 1-month and 3-month mortality rates, as well as the incidence of complications such as hepatic encephalopathy, spontaneous bacterial peritonitis, and hepatorenal syndrome.
Single-cell mass spectrometry (SCMS) is an emerging tool for studying cell heterogeneity according to variation of molecular species in single cells. Although it has become increasingly common to employ machine learning models in SCMS data analysis, such as the classification of cell phenotypes, the existing machine learning models often suffer from low adaptability and transferability. In addition, SCMS studies of rare cells can be restricted by limited number of cell samples.
View Article and Find Full Text PDFThe aim of this study was to explore the effect and mechanism of formononetin (FMNT) in thermal-injured fibroblast proliferation, apoptosis, and oxidative stress. After thermal injury, human skin fibroblast (HSF) cells showed inhibited proliferation, migration, extracellular matrix (ECM) synthesis; and increased apoptosis, reactive oxygen species (ROS) production, and inflammation. Specifically, after thermal injury, cell viability, migration distance, and protein levels of collagen I, collagen III, α-SMA, MMP1, and MMP3 were reduced; cell apoptosis rate and TUNEL-positive cell numbers were increased; the levels of Bax and cleaved caspase-3 were elevated, while Bcl-2 level was reduced.
View Article and Find Full Text PDFAlthough most advanced-stage ovarian cancers initially respond to platinum- and taxane-based chemotherapy, the majority of them will recur and eventually develop chemoresistance. Among all drug resistance mechanisms, reduced drug uptake in tumors is regarded as an important pathway acquired by drug-resistant cancer cells. For patients with ovarian cancer, chemoresistant cells can develop into multicellular spheroids and spread through ascite fluid that accumulates in their abdomen.
View Article and Find Full Text PDFStudying cell heterogeneity can provide a deeper understanding of biological activities, but appropriate studies cannot be performed using traditional bulk analysis methods. The development of diverse single cell bioanalysis methods is in urgent need and of great significance. Mass spectrometry (MS) has been recognized as a powerful technique for bioanalysis for its high sensitivity, wide applicability, label-free detection, and capability for quantitative analysis.
View Article and Find Full Text PDFThis study aims to explore the impact of the herbal ointment Chushi Zhiyang Ruangao (CSZYRG) on the skin's microecological environment in a mouse model of atopic dermatitis (AD) and to understand the underlying mechanisms involved. The AD model was established in C57 mice using calpolitol (a hypocalcemic analog of vitamin D3; MC903). Medication-free matrix ointment, CSZYRG, and mometasone furoate cream (positive control group) were applied to the injured areas.
View Article and Find Full Text PDFCuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes.
View Article and Find Full Text PDFPsoriasis, a chronic and easily recurring inflammatory skin disease, causes a great economic burden to the patient's family because the etiology and mechanism are still unclear and the treatment cycle is long. In this study, the function and related mechanisms of Momordin Ic in psoriasis were investigated. The IMQ-induced mouse psoriasis model was constructed.
View Article and Find Full Text PDFCell-cell interactions, which allow cells to communicate with each other through molecules in their microenvironment, are critical for the growth, health, and functions of cells. Previous studies show that drug-resistant cells can interact with drug-sensitive cells to elevate their drug resistance level, which is partially responsible for cancer recurrence. Studying protein targets and pathways involved in cell-cell communication provides essential information for fundamental cell biology studies and therapeutics of human diseases.
View Article and Find Full Text PDFKiwi wine (KW) is tipically made by fermenting juice from peeled kiwifruit, resulting in the disposal of peel and pomace as by-products. However, the peel contains various beneficial compounds, like phenols and flavonoids. Since the peel is edible and rich in these compounds, incorporating it into the fermentation process of KW presents a potential solution to minimize by-product waste.
View Article and Find Full Text PDFMung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars.
View Article and Find Full Text PDFCell Commun Signal
May 2024
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death.
View Article and Find Full Text PDF