Publications by authors named "Zhibing Zhang"

The interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface.

View Article and Find Full Text PDF

To form nonspherical emulsion droplets, the interfacial tension driving droplet sphericity must be overcome. This can be achieved through interfacial particle jamming; however, careful control of particle coverage is required. In this work, we present a scalable novel batch process to form nonspherical particle-stabilized emulsions.

View Article and Find Full Text PDF

Background: Surface plasmon resonance (SPR) sensing technology has been widely used in biometrics, but the weak detection capability and low sensitivity limit the development of SPR biosensors. In this work, we propose to employ the transition metal disulfide (TMD) material MoS to induce the SPR effect into the near-infrared band. The aim of this work is to develop a near-infrared sensor capable of quantitatively detecting the concentration of cDNA, which is able to solve the problems of low sensitivity, parameter crosstalk and so on.

View Article and Find Full Text PDF

To achieve more accurate analysis and detection of changes in liquid parameters, we propose a dual-parameter surface plasmon resonance (SPR) sensor that can measure refractive index (RI) and pH simultaneously. In this paper, we compare and analyze the transmission spectrum when the SPR effect is excited by the cladding mode of a photonic crystal fiber (PCF) and the core mode of the no-core fiber. The results show that the SPR effect excited using the cladding mode is stronger and the sensor has better loss peaks, which is more conducive to realizing the detection of the external environment.

View Article and Find Full Text PDF

Intraflagellar transport 25 (IFT25) is a component of the IFT-B complex. In mice, even though this IFT component is not required for cilia formation in somatic cells, it is essential for sperm formation. However, the intracellular localization of this protein in male germ cells is not known given no reliable antibodies are available for histologic studies, and the dynamic trafficking in the developing sperm flagella is not clear.

View Article and Find Full Text PDF

Multi-parameter surface plasmon resonance (SPR) sensors generally have low detection sensitivity due to detection wavelength limitations. We developed a two-parameter SPR sensor for refractive index (RI) and temperature detection by cascading Ag/WO film photonic crystal fiber (PCF) and Ag/MoS film PCF together. By using WO film with a low effective refractive index to prevent oxidation of silver-based PCF and maintain a wider RI sensing channel detection band; at the same time, MoS film with a high effective refractive index is used to modulate the detection range of temperature sensing channel.

View Article and Find Full Text PDF

Background: The escalating costs of healthcare had prompted countries to undertake reforms, and in recent years China had focused on overhauling its outpatient healthcare system. China implemented the outpatient mutual-aid policy which had led to a change in the costs associated with outpatient treatment from being fully self-paid by the patient to being partially self-paid.

Purpose: This study aimed to assess the impact of the outpatient mutual-aid policy on inpatient services for oncology patients in Wuhan, China, exploring the impact that the cumbersome administration of health insurance would have on patient welfare.

View Article and Find Full Text PDF

Water microdroplets possess unique interfacial properties that enable chemical reactions to occur spontaneously and increase the reaction rate by orders of magnitude. In this study, water containing styrene (SY) was cyclically sprayed into the air to form microdroplets with an average diameter of 6.7 μm.

View Article and Find Full Text PDF

N-methyladenosine (mA) is a prevalent internal post-transcriptional modification in eukaryotic RNAs executed by mA-binding proteins known as "readers." Our previous research demonstrated that the Arabidopsis mA reader ECT2 positively regulates transcript levels of the proteasome regulator PTRE1 and several 20S proteasome subunits, thereby enhancing 26S proteasome activity. However, mechanism underlying the selective recognition of mA targets by readers, such as ECT2, remains elusive.

View Article and Find Full Text PDF

Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers.

View Article and Find Full Text PDF

Encapsulation technology is well established for entrapping active ingredients within an outer shell for their protection and controlled release. However, many solutions employed industrially use nondegradable cross-linked synthetic polymers for shell formation. To curb rising microplastic pollution, regulatory policies are forcing industries to substitute the use of such intentionally added microplastics with environmentally friendly alternatives.

View Article and Find Full Text PDF
Article Synopsis
  • Commercial perfume microcapsules are trending globally, but most use synthetic or animal ingredients, creating environmental issues like microplastic pollution.
  • Researchers developed a new type of dual-shell microcapsule made of fungal chitosan and silica (SiO), which is more eco-friendly and better aligns with diverse consumer values.
  • The dual-shell microcapsules demonstrated superior strength and lower oil release compared to single-shell versions, making them suitable for various applications like cosmetics and detergents.
View Article and Find Full Text PDF

Background: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact.

Main Text: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC.

View Article and Find Full Text PDF

In order to broaden the sensing bandwidth of surface plasmon resonance (SPR) sensors, we propose and demonstrate a dual-channel SPR fiber optic sensor with wide bandwidth. The sensor is fabricated using no-core fiber (NCF), in which the film consists of a silver film and a ZnO film. The sensing characteristics are investigated by simulation and experiment.

View Article and Find Full Text PDF

A mirrored transformation optics (MTO) approach is presented to overcome the material mismatch in transformation optics. It makes good use of the reflection behavior and introduces a mirrored medium to offset the phase discontinuities. Using this approach, a high-performance planar focusing lens of transmission type is designed, which has a larger concentration ratio than the other focusing lens obtained by the generalized Snell's law.

View Article and Find Full Text PDF

Spontaneous generation of HO in sub-10 μm-sized water microdroplets has received increasing interest since its first discovery in 2019. On the other hand, due to the short lifetime of these microdroplets (rapid evaporation) and lack of suitable tools to real-time monitor the generation of HO in individual microdroplets, such a seemingly thermodynamically unfavorable process has also raised vigorous debates on the origin of HO and the underlying mechanism. Herein, we prepared water microdroplets with a long lifetime (>1 h) by virtue of microwell confinement and dynamically monitored the spontaneous generation of HO in individual microdroplets via time-lapsed fluorescence imaging.

View Article and Find Full Text PDF

Induction of antigen-specific immune tolerance for the treatment of allergic or autoimmune diseases is an attractive strategy. Herein, we investigated the protective effect of a transdermal microneedle patch against allergic asthma by stimulating allergen-specific immune tolerance. We fabricated biodegradable tolerogenic nanoparticles (tNPs) that are loaded with a model allergen ovalbumin (OVA) and an immunomodulator rapamycin, and filled the tNPs into microneedle tips by centrifugation to form sustained-release microneedles.

View Article and Find Full Text PDF

It is well established that the biomechanical properties of the Stratum Corneum (SC) are influenced by both moisture-induced plasticization and the lipid content. This study employs Atomic Force Microscopy to investigate how hydration affects the surface topographical and elasto-viscoplastic characteristics of corneocytes from two anatomical sites. Volar forearm cells underwent swelling when immersed in water with a 50% increase in thickness and volume.

View Article and Find Full Text PDF

Epoxidation of allyl chloride and hydrogen peroxide (HO) carried out in heterogeneous catalytic systems suffer from poor reaction efficiency due to their heavy mass transfer resistance present at the liquid-liquid interface. Pickering interfacial catalysis (PIC) provides an elegant solution by involving the design of amphiphilic heterogeneous catalysts, which can act as emulsifiers simultaneously. In this study, interface-active polyoxometalate-loaded hyper-crosslinked nanoparticles (HCNPs) were designed.

View Article and Find Full Text PDF

Restoring immune tolerance is the ultimate goal for rheumatoid arthritis (RA) treatment. The most reported oral or intravenous injection routes for the immunization of autoantigens cause gastrointestinal side effects, low patient compliance, and unsatisfied immune tolerance induction. Herein, the use of a transdermal microneedle patch is for the first time investigated to codeliver CII peptide autoantigen and rapamycin for reversing immune disorders of RA.

View Article and Find Full Text PDF

Background: The Stratum Corneum (SC) is the first barrier of the skin. The properties of individual cells are crucial in understanding how the SC at different anatomical regions maintains a healthy mechanical barrier. The aim of the current study is to present a comprehensive description of the maturation and mechanical properties of superficial corneocytes at different anatomical sites in the nominal dry state.

View Article and Find Full Text PDF

Background: Pressure ulcers (PUs) are chronic wounds that are detrimental to the quality of life of patients. Despite advances in monitoring skin changes, the structure and function of skin cells over the site of pressure ulcers are not fully understood.

Objective: The present study aims to evaluate local changes in the properties of superficial corneocytes in category 1 PU sites sampled from a cohort of hospitalised patients.

View Article and Find Full Text PDF

Polyamines have emerged as a promising class of CO absorbents due to their remarkable sequestration capacity. However, their potential industrial application as aqueous absorbents is significantly hindered by a low regeneration efficiency and high energy consumption. To address these issues, this study investigates the use of triethylenetetramine (TETA) and ethylene glycol (EG) to develop a nonaqueous absorbent.

View Article and Find Full Text PDF

Expensive rhodium (Rh)-based catalysts have been widely used for the hydroformylation of propene. To find a cheaper and effective alternative to these Rh-based catalysts, herein, a series of phosphine ligands were used to coordinate with iridium, and their catalytic reactivities for the hydroformylation of propene were systematically investigated in this study. The effects of different phosphine ligands, pressures, temperatures, and catalyst dosages on the hydroformylation of propene were investigated.

View Article and Find Full Text PDF

The role of the mechanical environment in defining tissue function, development and growth has been shown to be fundamental. Assessment of the changes in stiffness of tissue matrices at multiple scales has relied mostly on invasive and often specialist equipment such as AFM or mechanical testing devices poorly suited to the cell culture workflow.In this paper, we have developed a unbiased passive optical coherence elastography method, exploiting ambient vibrations in the sample that enables real-time noninvasive quantitative profiling of cells and tissues.

View Article and Find Full Text PDF