Publications by authors named "Zhiang Shao"

Renal cell carcinoma (RCC) ranks among the leading causes of cancer-related mortality. Despite extensive research, the precise etiology and progression of RCC remain incompletely elucidated. Long noncoding RNA (lncRNA) has been identified as competitive endogenous RNA (ceRNA) capable of binding to microRNA (miRNA) sites, thereby modulating the expression of messenger RNAs (mRNA) and target genes.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited.

View Article and Find Full Text PDF

Many studies have indicated that tumor growth factor-beta (TGF-β) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-β signaling to regulate diverse cellular processes. But whether the PC participates in TGF-β induced RIBEs remains unclear.

View Article and Find Full Text PDF

Selective electro-oxidation of aliphatic alcohols into value-added carboxylates at lower potentials than that of the oxygen evolution reaction (OER) is an environmentally and economically desirable anode reaction for clean energy storage and conversion technologies. However, it is challenging to achieve both high selectivity and high activity of the catalysts for the electro-oxidation of alcohols, such as the methanol oxidation reaction (MOR). Herein, a monolithic CuS@CuO/copper-foam electrode for the MOR with superior catalytic activity and almost 100% selectivity for formate is reported.

View Article and Find Full Text PDF

H3K56 acetylation (H3K56Ac) was reported to play a critical role in chromatin assembly; thus, H3K56ac participates in the regulation of DNA replication, cell cycle progression, DNA repair, and transcriptional activation. To investigate the influence of DNA damage regulators on the acetylation of histone H3 and gene transcription, U2OS cells expressing SNAP-labeled H3.1 or SNAP-labeled H3.

View Article and Find Full Text PDF

To mitigate environmental pollution caused by the escape of dust during coal storage and transportation, humic acid (HA) and grafted acrylamide (AM) were used as raw materials to prepare a composite dust suppressant suitable for coal storage and transportation. Single-factor experiments were used to explore the optimal synthesis conditions of the dust suppressant, and the microstructure of the product was studied using Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (H-NMR), scanning electron microscopy (SEM), and other methods. The wetting effect of the dust suppressant on coal was also investigated by way of molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Conductive hydrogel-based epidermal sensors are attracting significant interest due to their great potential in soft robotics, electronic skins, bioelectronics and personalized healthcare monitoring. However, the conventional conductive hydrogel-based epidermal sensors cannot be degraded, resulting in the significant problem of waste, which will gradually increase the burden on the environment. Herein, degradable adhesive epidermal sensors were assembled using conductive nanocomposite hydrogels, which were prepared via the conformal coating of cellulose nanofiber (CNF) networks and supramolecular interaction among CNF, polydopamine (PDA), Fe, and polyacrylamide (PAM).

View Article and Find Full Text PDF

Novel gel materials are proposed for fire prevention and extinction in coal mines, where spontaneous combustion of coal continues to pose a significant risk. Cationic polyacrylamide (CPAM), anionic polyacrylamide (HPAM), and carboxymethyl cellulose (CMC) were each introduced separately into a sodium silicate (WG) gel, to obtain three gels labeled as CPAM/WG, HPAM/WG, and CMC/WG. A crosslinking agent, aluminum citrate, was subsequently added to the HPAM/WG and CMC/WG gels to afford two novel interpenetrating network hydrogels, HPAM-Al/WG and CMC-Al/WG, respectively.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Zhiang Shao"

  • - Zhiang Shao's recent research emphasizes advancements in the understanding and treatment of renal cell carcinoma (RCC), particularly focusing on the roles of long noncoding RNA (lncRNA) in competitive endogenous RNA networks, as well as the potential benefits of combining immune checkpoint inhibitors with carbon ion radiotherapy.
  • - In exploring cellular mechanisms, Shao investigates the role of primary cilia in mediating radiation-induced bystander effects through TGF-β1 signaling, highlighting important pathways involved in tumor response and growth.
  • - The breadth of Shao's research also extends to environmental applications, including the development of effective dust suppressants for coal transportation and methods to prevent spontaneous combustion in coal mines, indicating a diverse scientific approach that blends cancer research with environmental science.