Publications by authors named "ZhiZhong Guan"

In this study, we aimed to investigate the mechanism by which fluoride exposure causes bone damage and the relationship with the loss of dorsal longitudinal anastomotic vessel (DLAV) formation in zebrafish larvae to further understanding of skeletal fluorosis. We assessed the development of chondrogenesis, osteogenesis, and DLAV angiogenesis, and reactive oxygen species (ROS) in zebrafish larvae subjected to blank control group (Con), low-fluoride group (LF), and high-fluoride group (HF). Abnormal development of the cartilage area, bone mineralization accompanied with abnormal mRNA expression of osteoblast-related OC, ALP, and Runx2b genes and osteoclast-related OPG and RANKL genes, and abnormal DLAV angiogenesis and ROS levels in zebrafish larvae were affected to varying degrees with the increase of fluoride exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Cognitive impairment is commonly seen in neurodegenerative diseases, but its causes and brain changes vary, making treatment challenging.
  • The review emphasizes the significance of neuronal nicotinic acetylcholine receptors (nAChRs) in brain function and their connection to cognitive disorders like Alzheimer's and Parkinson's.
  • Targeting specific nAChR subtypes, particularly α4β2 and α7, could lead to improved drug therapies for managing cognitive impairments.
View Article and Find Full Text PDF
Article Synopsis
  • Coal-burning fluorosis is caused by long-term exposure to high-fluoride coal used for heating and cooking, which affects the PPARGC1A gene and its expression levels.
  • The study found specific genetic variations (genotypes) at several loci, such as rs13131226 and rs1873532, that significantly increase the risk of developing coal-burning and skeletal fluorosis.
  • Increased methylation in the mitochondrial DNA D-loop region is linked to a higher risk of coal-burning fluorosis, highlighting the interaction between genetic factors and environmental exposure in the Guizhou population.
View Article and Find Full Text PDF

This study aimed to explore the role of histone methyltransferase SET and MYND domain containing 3 (SMYD3) in bone metabolism of osteoblasts exposed to fluoride. The levels of urine fluoride, BALP, and OC and the mRNA expression of SMYD3 were determined in patients with skeletal fluorosis and non-fluoride-exposed people on informed consent. The expression of SMYD3 protein, OC contents, and BALP activities were detected in human osteoblast-like MG63 cells and rat primary osteoblasts treated with sodium fluoride (NaF) for 48 h.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202505000-00028/figure1/v/2024-07-28T173839Z/r/image-tiff Several studies have shown that activation of unfolded protein response and endoplasmic reticulum (ER) stress plays a crucial role in severe cerebral ischemia/reperfusion injury. Autophagy occurs within hours after cerebral ischemia, but the relationship between ER stress and autophagy remains unclear.

View Article and Find Full Text PDF

Background: Although the changes of mitogen-activated protein kinase (MAPK) pathway in the central nervous system (CNS) induced by excessive fluoride has been confirmed by our previous findings, the underlying mechanism(s) of the action remains unclear. Here, we investigate the possibility that microRNAs (miRNAs) are involved in the aspect.

Methods: As a model of chronic fluorosis, SD rats received different concentrations of fluoride in their drinking water for 3 or 6 months and SH-SY5Y cells were exposed to fluoride.

View Article and Find Full Text PDF

Oxidative stress is involved in the pathogenesis of Alzheimer's disease (AD), which is linked to reactive oxygen species (ROS), lipid peroxidation, and neurotoxicity. Emerging evidence suggests a role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a major source of antioxidant response elements in AD. The molecular mechanism of oxidative stress and ferroptosis in astrocytes in AD is not yet fully understood.

View Article and Find Full Text PDF

Dental fluorosis, resulting from long-term environmental exposure to fluoride, is prevalent among diverse populations worldwide. Severe fluorosis not only compromises the aesthetic appeal of teeth but also impairs their functionality. This study aims to investigate the oral microbiome in dental fluorosis and the health individuals of adolescents living in the endemic fluorosis area of Guizhou, China through full-length 16S rDNA sequencing.

View Article and Find Full Text PDF

Epidemiology has shown that fluoride exposure is associated with the occurrence of diabetes. However, whether fluoride affects diabetic encephalopathy is unclear. Elderly diabetic patients in areas with endemic (n = 169) or no fluorosis (108) and controls (85) underwent Montreal Cognitive Assessment.

View Article and Find Full Text PDF

To investigate the impact of the ethanoic fractions of Periploca forrestii Schltr. (P. forrestii) in ameliorating the liver injury caused by fluoride ingestion and to explore the potential mechanisms.

View Article and Find Full Text PDF

To investigate the relationship between fluoride exposure and Osteochondroma (OC) prevalence, a cross-sectional study was conducted in drinking water endemic fluorosis areas of Heilongjiang Province, China. Our study first reported that the prevalence of OC was 2.3% in drinking water endemic fluorosis areas of Heilongjiang Province, China, and no difference in gender.

View Article and Find Full Text PDF

Previous studies indicate that fluoride in drinking water has a toxic effect on cartilage and skeleton, which triggers osteoarthritis (OA) of which the most frequent is knee OA (KOA). A cross-sectional study was conducted to assess the association between fluoride exposure and KOA among 1128 subjects. Water fluoride (WF) and urinary fluoride (UF) were chosen as external exposure (internal exposure) of fluoride.

View Article and Find Full Text PDF

To evaluate the association between ATP2B1 gene polymorphisms and skeletal fluorosis, a cross-sectional study was conducted. In China, 962 individuals were recruited, including 342 cases of skeletal fluorosis. Four TP2BA1 polymorphisms (rs2070759, rs12817819, rs17249754, and rs7136259) were analysed.

View Article and Find Full Text PDF

To reveal the molecular mechanism of brain damage induced by chronic fluorosis, expression of PTEN-induced kinase 1 (PINK1)/parkin RBR E3 ubiquitin-protein ligase (Parkin)-mediated mitophagy pathway and activity of mitochondrial superoxide dismutase (SOD) were investigated in rat brains and primary cultured neurons exposed to high level of fluoride. Sprague-Dawley (SD) rats were treated with fluoride (0, 5, 50, and 100 ppm) for 3 and 6 months. The primary neurons were exposed to 0.

View Article and Find Full Text PDF

Flagella are the main motility structure of that affects the adhesion, colonization, and virulence of in the human gastrointestinal tract. The FliL protein is a single transmembrane protein bound to the flagellar matrix. This study aimed to investigate the effect of the FliL encoding gene flagellar basal body-associated FliL family protein () on the phenotype of .

View Article and Find Full Text PDF

To examine whether resveratrol (RSV), an activator of silent mating-type information regulation 2 homolog 1 (SIRT1), can reverse the disruption of lipid metabolism caused by β-amyloid peptide (Aβ), APP/PS1 mice or cultured primary rat neurons were treated with RSV, suramin (inhibitor of SIRT1), ZLN005, a stimulator of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), or PGC-1α silencing RNA. In the brains of the APP/PS1 mice, expressions of SIRT1, PGC-1α, low-density lipoprotein receptor (LDLR) and very LDLR (VLDLR) were reduced at the protein and, in some cases, mRNA levels; while the levels of the proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein E (ApoE), total cholesterol and LDL were all elevated. Interestingly, these changes were reversed by administration of RSV, while being aggravated by suramin.

View Article and Find Full Text PDF

Background: Single-nucleotide polymorphisms (SNPs) and DNA methylation are crucial regulators of essential hypertension (EH). Amyloid precursor protein (APP) mutations are implicated in hypertension development. Nonetheless, studies on the association of APP gene polymorphism and promoter methylation with hypertension are limited.

View Article and Find Full Text PDF

Thermophilic group II intron is one type of retrotransposon composed of intron RNA and intron-encoded protein (IEP), which can be utilized in gene targeting by harnessing their novel ribozyme-based DNA integration mechanism termed "retrohoming." It is mediated by a ribonucleoprotein (RNP) complex that contains the excised intron lariat RNA and an IEP with reverse transcriptase (RT) activity. The RNP recognizes targeting sites by exon-binding sequences 2 (EBS2)/intron-binding sequences 2 (IBS2), EBS1/IBS1, and EBS3/IBS3 bases pairing.

View Article and Find Full Text PDF

Objective: A case-control study was conducted to evaluate the relationship between endothelial nitric oxide synthase (NOS3) gene polymorphism and essential hypertension in the Han, Miao, and Buyi populations in Guizhou China.

Methods: DNA was collected from the blood samples of 353 essential hypertension patients and 342 healthy controls from Guizhou province of China. Eight polymorphisms of the NOS3 gene were genotyped using the Sequenom MassARRAY platform.

View Article and Find Full Text PDF

Introduction: For investigating the mechanism of brain injury caused by chronic fluorosis, this study was designed to determine whether NRH:quinone oxidoreductase 2 (NQO2) can influence autophagic disruption and oxidative stress induced in the central nervous system exposed to a high level of fluoride.

Methods: Sprague-Dawley rats drank tap water containing different concentrations of fluoride for 3 or 6 months. SH-SY5Y cells were either transfected with NQO2 RNA interference or treated with NQO2 inhibitor or activator and at the same time exposed to fluoride.

View Article and Find Full Text PDF

To investigate the potential association between LRP5 rs648438 polymorphism and the risk of skeletal fluorosis (SF) was evaluated in a cross-sectional case-control study conducted in Shanxi, China, in 2019. A total of 973 individuals were enrolled in this study, in which cases and controls were 346 and 627, respectively. SF was diagnosed according to the standard WS/192-2008 (China).

View Article and Find Full Text PDF

Background: Potential protection against the neurotoxic damages of high levels of fluoride on rats and SH-SY5Y cells by extract of Ginkgo biloba leaves, as well as underlying mechanisms, were examined.

Methods: The rats were divided randomly into 4 groups, i.e.

View Article and Find Full Text PDF

Objective: To explore the function and mechanism of Sirt-1 in fluorine-induced liver injury.

Method: Fluorosis rats were first established. The fluorine content, pathological structure, collagen fibers, and fibrosis in liver tissues were tested through the fluoride ion selective electrode method, H&E, Masson, and Sirius red staining; alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin 18 (IL-18), and tumor necrosis factor- (TNF-) levels in rat serum were also analyzed using ELISA kits.

View Article and Find Full Text PDF

Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacteria that is one of the leading causes of antibiotic-associated diarrhea. The cell wall protein 66 gene () encodes a cell wall protein, which is the second major cell surface antigen of C. difficile.

View Article and Find Full Text PDF

BACKGROUND To reveal the mechanism underlying the effect of alpha7 nicotinic acetylcholine receptor (nAChR) on neurodegeneration in Alzheimer disease (AD), the influence of the receptor on recognition in APP/PS1 mice was evaluated by using its selective agonist (PNU-282987). MATERIAL AND METHODS APP/PS1 and wild-type (WT) mice were treated with PNU or saline, respectively, for 7 days at the ages of 6 and 10 months. RESULTS Morris water maze analysis showed that both at 6 and 10 months of age, PNU treatment enhanced the learning and memory of APP/PS1 mice.

View Article and Find Full Text PDF