Fermi resonance is a common phenomenon, and a hidden caveat exists in the applications of infrared probes, causing spectral complication and shorter vibrational lifetime. In this work, using the cyanotryptophan (CNTrp) side chain model compound 5-cyanoindole (CN-5CNI), we performed Fourier transform infrared spectroscopy (FTIR) and two-dimensional infrared (2D-IR) spectroscopy on unlabeled CN-5CNI and its isotopically labeled substituents (CN-5CNI, CN-5CNI, CN-5CNI) and demonstrated the existence of Fermi resonance in 5CNI. By constructing the Hamiltonian and simulating 2D-IR spectra, we show that the distinct Fermi resonance 2D-IR patterns in various isotope substituents are determined by the quantum mixing consequences at the = 1 state, as well as the = 2 state, where the Fermi coupling and anharmonicity play a crucial role.
View Article and Find Full Text PDFMitochondrial dysfunction has been reported to participate in the pathophysiological processes of cerebral ischaemia-reperfusion injury, which include reduced energy homeostasis, increased generation of oxidative stress species (ROS) and the release of apoptotic factors. Oxyglutamate carrier (OGC) is an important carrier protein on the inner mitochondrial membrane that can transport metabolites from the cytoplasm to the mitochondria. The role of OGC in cerebral ischaemia-reperfusion injury (I/R) remains unknown.
View Article and Find Full Text PDFQuantum systems, including superconducting circuits, trapped ions, quantum dots, solid-state defects, etc., have achieved considerable advancements in readout fidelity. However, the widely used threshold method disregards the importance of temporal characteristics of the signal during continuous measurements, leading to information loss.
View Article and Find Full Text PDFMonitoring lithium ions (Li) in lithium-rich brine (LrB) is critical for metal recovery, yet challenges such as high ionic strength and gypsum-induced surface deterioration hinder the performance of potentiometric ion-selective electrode (ISE) sensors. This study advances the functionality of Li ISE sensors and enables continuous monitoring of Li concentration in LrB by introducing apolyelectrolyte multilayer (PEM) of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) that serves as an antigypsum scaling material to minimize nucleation on the sensor surface. With 5.
View Article and Find Full Text PDFSynthesizing high-crystalline covalent organic framework films is highly desired to advance their applications in two-dimensional optoelectronics, but it remains a great challenge. Here, we report a diffusion-limited synthesis strategy for wafer-scale uniform covalent organic framework films, in which pre-deposited 4,4',4″,4‴-(1,3,6,8-Tetrakis(4-aminophenyl) pyrene is encapsulated on substrate surface with a layer of covalent organic framework prepolymer. The polymer not only prevents the dissolution of precursor, but limits the reaction with terephthalaldehyde dissolved in solution, thereby regulating the polymerization process.
View Article and Find Full Text PDFWith the prevalence of cardiovascular disease, it is imperative that medical monitoring and treatment become more instantaneous and comfortable for patients. Recently, wearable and implantable optoelectronic devices can be seamlessly integrated into human body to enable physiological monitoring and treatment in an imperceptible and spatiotemporally unconstrained manner, opening countless possibilities for the intelligent healthcare paradigm. To achieve biointegrated cardiac healthcare, researchers have focused on novel strategies for the construction of flexible/stretchable optoelectronic devices and systems.
View Article and Find Full Text PDFOrienting intelligence and multifunction, stretchable semiconductors are of great significance in constructing next-generation human-friendly wearable electronic devices. Nevertheless, rendering semiconducting polymers mechanical stretchability without compromising intrinsic electrical performance remains a major challenge. Combining geometry-innovated inorganic systems and structure-tailored organic semiconductors, a molecular-scale geometric design strategy is proposed to obtain high-performance intrinsically stretchable polymer semiconductors.
View Article and Find Full Text PDFA desymmetrizing 1,2-addition of silicon nucleophiles to biaryl derivatives containing an 2,6-dicarbaldehyde-1-yl unit is reported. The reaction is catalyzed by copper with a triazolium-ion-derived N-heterocyclic carbene as the chiral ligand and makes use of an Si-B reagent as the silicon pronucleophile. The practical methodology furnishes axially chiral aromatic carbaldehydes decorated with a centrally chiral α-hydroxysilane moiety in moderate to good yields and with high enantio- as well as excellent diastereoselectivities.
View Article and Find Full Text PDFBackground: Targeted protein degradation of neosubstrates plays a crucial role in hematological cancer treatment involving immunomodulatory imide drugs (IMiDs) therapy. Nevertheless, the persistence of inevitable drug resistance and hematological toxicities represents a significant obstacle to their clinical effectiveness.
Methods: Phenotypic profiling of a small molecule compounds library in multiple hematological cancer cell lines was conducted to screen for hit degraders.
Recently, there has been an increasing interest in researching fermented food-derived yeasts as probiotics because they offer a natural and diverse source of potential strains with unique functional properties and health benefits. In this study, 13 yeast strains isolated from Zaopocu (ZPC), a traditional fermented dregs vinegar on Hainan Island, China, were evaluated for their probiotic characteristics in vitro. Yeast identification was conducted through 5.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
December 2024
Background: 17α-hydroxylase/17,20-lyase deficiency (17-OHD) is a rare subtype of congenital adrenal hyperplasia caused by homozygous or compound heterozygous pathogenic variants in the CYP17A1 gene.
Purpose: This study aimed to identify and characterize pathogenic variants in individuals with 17-OHD and to classify and validate the pathogenicity of novel variants.
Methods: Variants were identified via targeted long-read sequencing (TLRS) of the entire CYP17A1 gene in enrolled 17-OHD patients.
Transformer-based methodologies in object detection have recently piqued considerable interest and have produced impressive results. DETR, an end-to-end object detection framework, ingeniously integrates the Transformer architecture, traditionally used in NLP, into computer vision for sequence-to-sequence prediction. Its enhanced variant, DINO, featuring improved denoising anchor boxes, has showcased remarkable performance on the COCO val2017 dataset.
View Article and Find Full Text PDF9,9-bis (diphenylphosphorylphenyl) fluorene (FDPO) and dibenzotetrathienoacene (DBTTA), are synthesized as the neutral and anionic ligands, respectively, to prepare the Er coordination polymer [Er(DBTTA)(FDPO)]. Based on the intramolecular energy transfer, optical gains at 1.5 µm are demonstrated in [Er(DBTTA)(FDPO)]-doped polymer waveguides under excitations of low-power light-emitting diodes (LEDs) instead of laser pumping.
View Article and Find Full Text PDFManipulating magnetization via power-efficient spin-orbit torque (SOT) has garnered significant attention in the field of spin-based memory and logic devices. However, the damping-like SOT efficiency (ξ) in heavy metal (HM)/ferromagnetic metal (FM) bilayers is relatively small due to the strong spin dephasing accompanied by additional spin polarization decay. Furthermore, the perpendicular magnetic anisotropy (PMA) originating from the HM/FM interface is constrained by the thickness of FM, which is unfavorable for thermal stability in practical applications.
View Article and Find Full Text PDFExcessive synthetic nitrogen (N) inputs in intensive orchard agrosystems of developing countries are a growing concern regarding their adverse impacts on fruit production and the environment. Quantifying the distribution and contribution of fertilizer N is essential for increasing N use efficiency and minimizing N loss in orchards. A N tracer experiment was performed in a young dwarf apple orchard over two growing seasons to determine the fertilizer N transformation and fate.
View Article and Find Full Text PDFA copper-catalyzed C4-selective addition of silicon nucleophiles released from an Si-B reagent to prochiral pyridinium triflates is reported. The dearomatization proceeds with excellent enantioselectivity using Cu(CHCN)PF as the precatalyst and (R,R)-Ph-BPE (1,2-bis[(2R,5R)-2,5-diphenylphospholan-1-yl]ethane) as the chiral ligand. A carbonyl group at C3 is required for this, likely acting a weak donor group to preorganize and direct the nucleophilic attack towards C4.
View Article and Find Full Text PDFDue to the breaking of time-reversal and parity symmetries and the presence of non-conservative microscopic interactions, active spinner fluids and solids respectively exhibit nondissipative odd viscosity and nonstorage odd elasticity, engendering phenomena unattainable in traditional passive or active systems. Here, we study the effects of odd viscosity and elasticity on phase behaviors of active spinner systems. We find the spinner fluid under a simple shear experiences an anisotropic gas-liquid phase separation driven by the odd-viscosity stress.
View Article and Find Full Text PDFThe prevention of drying-induced cracking is crucial in maintaining the mechanical integrity and functionality of colloidal deposits and coatings. Despite exploring various approaches, controlling drying-induced cracking remains a subject of great scientific interest and practical importance. By introducing chain-like particles composed of the same material and with comparable size into commonly used colloidal suspensions of spherical silica nanoparticles, we can significantly reduce the cracks formed in dried particle deposits and achieve a fivefold increase in the critical cracking thickness of colloidal silica coatings.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2024
Background And Objective: Interactive soft tissue dissection has been a fundamental procedure in virtual surgery systems. Existing cutting algorithms involve complex topology changes of simulation meshes, which can increase simulation overhead and produce visual artifacts. In this paper, we proposed a novel graph-based shape-matching method that allows for real-time, flexible, progressive, and discontinuous cuts on soft tissue.
View Article and Find Full Text PDFStretchable neuromorphic optoelectronics present tantalizing opportunities for intelligent vision applications that necessitate high spatial resolution and multimodal interaction. Existing neuromorphic devices are either stretchable but not reconcilable with multifunctionality, or discrete but with low-end neurological function and limited flexibility. Herein, we propose a defect-tunable viscoelastic perovskite film that is assembled into strain-insensitive quasi-continuous microsphere morphologies for intrinsically stretchable neuromorphic vision-adaptive transistors.
View Article and Find Full Text PDFChallenges associated with stretchable optoelectronic devices, such as pixel size, power consumption and stability, severely brock their realization in high-resolution digital imaging. Herein, we develop a universal detachable interface technique that allows uniform, damage-free and reproducible integration of micropatterned stretchable electrodes for pixel-dense intrinsically stretchable organic transistor arrays. Benefiting from the ideal heterocontact and short channel length (2 μm) in our transistors, switching current ratio exceeding 10, device density of 41,000 transistors/cm, operational voltage down to 5 V and excellent stability are simultaneously achieved.
View Article and Find Full Text PDFIn this Letter, we demonstrate a sensitivity-enhanced strain sensor based on a shape-modulated multimode fiber (MMF). In contrast to conventional single-mode-multimode-single-mode (SMS) fiber structures, which typically contain a single cylindrical homogeneous MMF section, the shape of the MMF section in this investigation is modulated by lateral offset splicing of multiple MMF segments. Simulation results show that the designed shape-modulated MMF has a higher peak mechanical strain than that of a cylindrical MMF.
View Article and Find Full Text PDFIschemia-reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress.
View Article and Find Full Text PDF