Publications by authors named "ZhiYu Zhao"

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.

Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.

View Article and Find Full Text PDF

Peripheral nerves promote mouse bone marrow regeneration by activating b2 and b3 adrenergic receptor signaling, raising the possibility that non-selective b blockers could inhibit engraftment after hematopoietic cell transplants (HCTs). We observed no effect of b blockers on steady-state mouse hematopoiesis. However, mice treated with a non-selective b blocker (carvedilol), but not a b1-selective inhibitor (metoprolol), exhibited impaired hematopoietic regeneration after syngeneic or allogeneic HCTs.

View Article and Find Full Text PDF

Electrochemical CO capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process.

View Article and Find Full Text PDF

Fatty acid oxidation is of uncertain importance in most stem cells. We show by C-palmitate tracing and metabolomic analysis that hematopoietic stem/progenitor cells (HSPCs) engage in long-chain fatty acid oxidation that depends upon carnitine palmitoyltransferase 1a (CPT1a) and hydroxyacyl-CoA dehydrogenase (HADHA) enzymes. CPT1a or HADHA deficiency had little or no effect on HSPCs or hematopoiesis in young adult mice.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks effective therapeutic options. Hypoxia and immune escape are critical factors that contribute to the progression of and resistance to therapy in patients with TNBC. Nevertheless, few studies have comprehensively analyzed hypoxia and immune escape in patients with TNBC.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) mutations are frequent in cancer, yet their precise role in cancer progression remains debated. To functionally evaluate the impact of mtDNA variants on tumor growth and metastasis, we developed an enhanced cytoplasmic hybrid (cybrid) generation protocol and established isogenic human melanoma cybrid lines with wild-type mtDNA or pathogenic mtDNA mutations with partial or complete loss of mitochondrial oxidative function. Cybrids with homoplasmic levels of pathogenic mtDNA reliably established tumors despite dysfunctional oxidative phosphorylation.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) and erythropoiesis are activated during pregnancy and after bleeding by the derepression of retrotransposons, including endogenous retroviruses and long interspersed nuclear elements. Retrotransposon transcription activates the innate immune sensors cyclic guanosine 3',5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and stimulator of interferon (IFN) genes (STING), which induce IFN and IFN-regulated genes in HSCs, increasing HSC division and erythropoiesis. Inhibition of reverse transcriptase or deficiency for cGAS or STING had little or no effect on hematopoiesis in nonpregnant mice but depleted HSCs and erythroid progenitors in pregnant mice, reducing red blood cell counts.

View Article and Find Full Text PDF
Article Synopsis
  • Ascorbate (vitamin C) decreases the function of hematopoietic stem cells (HSCs) and helps prevent leukemia by enhancing the activity of the Tet2 tumor suppressor.
  • Deleting the Slc23a2 transporter from hematopoietic cells caused a significant drop in ascorbate levels within HSCs and multipotent progenitors (MPPs) but did not affect overall plasma ascorbate levels.
  • This deficiency led to increased reconstitution and self-renewal capabilities of HSCs and MPPs when transplanted into irradiated mice, particularly in their quiescent states, indicating that low ascorbate levels may enhance their long-term potential.
View Article and Find Full Text PDF

Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O evolution reactor is established.

View Article and Find Full Text PDF
Article Synopsis
  • Small-sized metals, like Cu nanopillars, behave differently under cyclic loading compared to larger metals because their limited space affects how dislocations form and move.* -
  • The study used in situ transmission electron microscopy to observe how dislocation tangles develop in single and twinned nanopillars during fatigue tests and identified the effects of slip systems.* -
  • Nanopillars with low-angle grain boundaries showed degradation due to cycling, leading to the release of grain boundary dislocations which helped support the structure under repeated stress.*
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how cellular metabolism changes during hematopoiesis, focusing on the effects of mitochondrial adenylate kinase 2 (AK2) deficiency in a severe immunodeficiency syndrome called reticular dysgenesis.
  • Using patient samples and CRISPR-modified human hematopoietic stem cells, the research reveals that AK2 deficiency affects mTOR signaling differently in early versus late granulocyte development, demonstrating the importance of metabolic checkpoints.
  • While early-stage AK2-deficient cells maintain survival due to effective metabolic regulation, late-stage cells experience unchecked mTOR activity and energy depletion, leading to proliferation arrest and cell death.
View Article and Find Full Text PDF

Myocardial infarction resulting from coronary artery atherosclerosis is the leading cause of heart failure, which represents a significant global health burden. The limitations of conventional pharmacologic thrombolysis and flow reperfusion procedures highlight the urgent need for new therapeutic strategies to effectively treat myocardial infarction. In this study, we present a novel biomimetic approach that integrates polyphenols and metal nanoenzymes, inspired by the structure of pomegranates.

View Article and Find Full Text PDF

Most in situ tissue-engineered heart valve (TEHV) evaluation studies are conducted in a healthy physical environment, which cannot accurately reflect the specific characteristics of patients. In this study, we established a diabetic rabbit model and implanted decellularized extracellular matrix (dECM) into the abdominal aorta of rabbits through interventional surgery with a follow-up period of 8 weeks. The results indicated that dECM implants in diabetic rabbits exhibited poorer endothelialization and more severe fibrosis compared to those in healthy animals.

View Article and Find Full Text PDF

Owing to their nontoxicity, environmental friendliness, and high biocompatibility, physically cross-linked hydrogels have become popular research materials; however, their high water content and high free volume, along with the weak bonding interactions inherent to ordinary physically cross-linked hydrogels, limit their application in fields such as flexible devices, packaging materials, and substance transport regulation. Here, a structural barrier approach based on directional freezing-assisted salting out was proposed, and the directional structure significantly enhanced the barrier performance of the hydrogel. When the direction of substance diffusion was perpendicular to the pore channel structure of the directional freezing-PVA hydrogel (DFPVA), the Cl transmission rate was 57.

View Article and Find Full Text PDF

Thermoelectric technology has recently emerged as a distinct therapeutic modality. However, its therapeutic effectiveness is significantly limited by the restricted temperature gradient within living organisms. In this study, we introduce a high-performance plasmonic-thermoelectric catalytic therapy utilizing urchin-like CuSe hollow nanospheres (HNSs) with a cascade of plasmonic photothermal and thermoelectric conversion processes.

View Article and Find Full Text PDF

Photoresponsive ruthenium(II) complexes have recently emerged as a promising tool for synergistic photodynamic therapy and chemotherapy in oncology, as well as for antimicrobial applications. However, the limited penetration power of photons prevents the treatment of deep-seated lesions. In this study, we introduce a sonoresponsive ruthenium complex capable of generating superoxide anion (O) via type I process and initiating a ligand fracture process upon ultrasound triggering.

View Article and Find Full Text PDF

Malaria remains a global health concern as drug resistance threatens treatment programs. We identified a piperidine carboxamide (SW042) with anti-malarial activity by phenotypic screening. Selection of SW042-resistant Plasmodium falciparum (Pf) parasites revealed point mutations in the Pf_proteasome β5 active-site (Pfβ5).

View Article and Find Full Text PDF

A detailed understanding of ligand-protein interaction is essential for developing rational drug-design strategies. In recent years, technological advances in cryo-electron microscopy (cryo-EM) brought a new era to the structural determination of biological macromolecules and assemblies at high resolution, marking cryo-EM as a promising tool for studying ligand-protein interactions. However, even in high-resolution cryo-EM results, the densities for the bound small-molecule ligands are often of lower quality due to their relatively dynamic and flexible nature, frustrating their accurate coordinate assignment.

View Article and Find Full Text PDF

Spirostomum is a genus of large ciliates, and its species are distributed worldwide. However, there has been limited research conducted on their geographical distribution and genomics. We obtained nine samples of ciliates from eight regions in Liaoning Province, China, and conducted a study on their geographical distribution and characteristics.

View Article and Find Full Text PDF

Direct hydrogen production from inexhaustible seawater using abundant offshore wind power offers a promising pathway for achieving a sustainable energy industry and fuel economy. Various direct seawater electrolysis methods have been demonstrated to be effective at the laboratory scale. However, larger-scale in situ demonstrations that are completely free of corrosion and side reactions in fluctuating oceans are lacking.

View Article and Find Full Text PDF

Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche.

View Article and Find Full Text PDF

Measuring the expression levels of membrane proteins (MPs) is crucial for understanding cell differentiation and tissue specificity, defining disease characteristics, identifying biomarkers, and developing therapeutics. While bottom-up proteomics addresses the need for accurately surveying the membrane proteome, the lower abundance and hydrophobic nature of MPs pose challenges in sample preparation. As MPs normally reside in the lipid bilayer, conventional extraction methods rely on detergents, introducing here a paradox - detergents prevent aggregation and facilitate protein processing, but themselves become contaminants that interfere with downstream analytical applications.

View Article and Find Full Text PDF

Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter severely depleted ascorbate from hematopoietic cells.

View Article and Find Full Text PDF

Compared to protein-protein and protein-nucleic acid interactions, our knowledge of protein-lipid interactions remains limited. This is primarily due to the inherent insolubility of membrane proteins (MPs) in aqueous solution. The traditional use of detergents to overcome the solubility barrier destabilizes MPs and strips away certain lipids that are increasingly recognized as crucial for protein function.

View Article and Find Full Text PDF