Publications by authors named "ZhiYing Yan"

Heavy metal ion pollution poses a serious threat to the natural environment and human health. Photoreduction through Bi-based photocatalysts is regarded as an advanced green technology for solving environmental problems. However, their photocatalytic activity is limited by the rapid recombination of photogenerated e and h pairs and a low photo-quantum efficiency.

View Article and Find Full Text PDF

Here, we constructed a novel bacterial deodorant (BD) composed of Delftia tsuruhatensis, Paracoccus denitrificans, Pediococcus acidilactici, and Bacillus velezensis. The BD alone removed 64.84 % of NH, 100 % of HS, and 63.

View Article and Find Full Text PDF

Low ambient temperature become the limiting factor of composting in cold regions, thus hindering the recycle of agricultural and forestry wastes. In this study, the composting of mushroom residue and wood chips (MRWC) under low temperature was successfully implemented with inoculation of psychrotolerant cellulolytic microbial agent. Composting entered thermophilic stage on third day and the peak temperature reached to 66.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on using the Heterotrophic nitrification-aerobic denitrification strain Paracoccus denitrificans HY-1 in a biological trickling filter (BTF) reactor to improve ammonia (NH) removal efficiency, achieving a high rate of 96.52% under specific conditions.
  • - Results showed that after inoculation with HY-1 and using bamboo charcoal as filler, levels of ammonia and other nitrogen compounds in the circulating fluid were significantly low, indicating effective nitrification and denitrification processes.
  • - The HY-1 inoculated BTF was tested in a large-scale piggery setting, successfully removing 99.61% of ammonia and 96.63% of hydrogen
View Article and Find Full Text PDF

Microbiologically induced calcite precipitation (MICP), as a newly developing bioremediation technology, could redeem heavy metal contamination in diverse scenarios. In this study, MICP bacterium Sporosarcina ureilytica ML-2 was employed to suppress the pollution of Pb, Cd and Zn in municipal sludge nutrient soil. After MICP remediation, the exchangeable Cd and Zn in sludge nutrient soil were correspondingly reduced by 31.

View Article and Find Full Text PDF

As an important source of malodor, the odor gases emitted from public toilet significantly interfered the air quality of living surroundings, resulting in environmental problem which received little attention before. Thus, this paper explored the odor release pattern of latrine feces and deodorization effect with composited microbial agent in Chengdu, China. The odor release rules were investigated in sealed installations with a working volume of 9 L for 20 days.

View Article and Find Full Text PDF

The design and synthesis of efficient photocatalysts that promote the degradation of organic pollutants in water have attracted extensive attention in recent years. In this work, CdS nanoparticles are grown in situ on Co@C derived from metal-organic frameworks. The resulting hierarchical CdS/Co@C nanostructures are evaluated in terms of their adsorption and photocatalytic ciprofloxacin degradation efficiency under visible-light irradiation.

View Article and Find Full Text PDF

A pilot-scale biological trickling filter (BTF) reactor (13.5 L) packed with different fillers (Pine bark, Cinder, Straw, and MBBR (mobile bed biofilm reactor) filler was employed to evaluate their removal performance of HS and NH after heterotrophic bacterium addition, and some parameters, including different packing heights, empty bed residence time (EBRT), inlet titers, loading ratios, and restart trial, were investigated in this study. According to the experimental results, BTF filled with pine bark exhibited better removal efficiency than other reactors under a variety of conditions.

View Article and Find Full Text PDF

To investigate the inhibitory effect of LNCNA-NEA1 on pancreatic cancer development and progression via spongiosa miR-146b-5p/TRAF6, 60 pancreatic cancer patients diagnosed from December 2017 to December 2019 were selected as a general source of information. Real-time fluorescence quantitative polymerase chain reaction (RTFQ-PCR) was used to detect the expression level of NEAT1 in cancerous and adjacent non-cancerous tissues. Cell counting kit-8 (CCK-8) and transwell were used to determine the effect of LNCNA-NEA1 on the proliferation and migration of pancreatic cancer cells (Panc-1).

View Article and Find Full Text PDF

ZnInS, a novel two-dimensional visible light-responsive photocatalyst, has attracted much attention in the photocatalytic evolution of H under visible light irradiation due to its attractive intrinsic photoelectric properties and geometric configuration. However, ZnInS still has severe charge recombination, which results in moderate photocatalytic performance. Herein, we report the successful synthesis of 2D/2D ZnInS/TiC nanocomposites by a facile one-step hydrothermal method.

View Article and Find Full Text PDF

A heterotrophic nitrifying aerobic denitrifying (HN-AD) strain HY-1 with excellent capacity, identified as Paracoccus denitrificans, was isolated from activated sludge. HY-1 was capable of removing NH, NO, and NO with the corresponding rate of 17.33 mg-N L h, 21.

View Article and Find Full Text PDF

Microbiologically induced calcite precipitation (MICP) technology shows potential for remediating heavy metal pollution; however, the underlying mechanism of heavy metal mineralization is not well-understood, limiting the application of this technology. In this study, we targeted Cd contamination (using 15:1, 25:1, and 50:1 Ca/Cd molar ratios) and showed that the ureolytic bacteria Sporosarcina ureilytica ML-2 removed >99.7 % Cd with a maximum fixation capacity of 75.

View Article and Find Full Text PDF

Microbiologically induced calcite precipitation (MICP) has shed new light on solving the problem of in situ stabilization of heavy metals (HMs) in sewage sludge before land disposal. In this study, we examined whether MICP treatment can be integrated into a sewage sludge anaerobic digestion-land application process. Our results showed that MICP treatment not only prevented the transfer of ionic-state Cd from the sludge to the supernatant (98.

View Article and Find Full Text PDF

A novel photosensitized living biohybrid was fabricated by inward-to-outward assembly of amine-functionalized carbon dots (NCDs) and polydopamine (PDA) to Shewanella oneidensis MR-1 and applied for high-efficiency, microbial-photoreduction of Cr(VI). Within a 72 h test period, biohybrids achieved a pronounced catalytic reduction capacity (100%) for 100 mg/L Cr(VI) under visible illumination, greatly surpassing the poor capacity (only 2.5%) displayed by the wild strain under dark conditions.

View Article and Find Full Text PDF

In the last few decades, many new synthesis techniques have been developed in order to obtain an effective visible-light responsive photocatalyst for hydrogen production by water splitting. Among these new approaches, the biotemplated synthesis method has aroused much attention because of its unique advantages in preparing materials with special morphology and structure. In this work, (L.

View Article and Find Full Text PDF

Currently, the industrial application of bioelectrochemical systems (BESs) that are incubated with natural electrochemically active microbes (EABs) is limited due to inefficient extracellular electron transfer (EET) by natural EABs. Notably, recent studies have identified several novel living biomaterials comprising highly efficient electron transfer systems allowing unparalleled proficiency of energy conversion. Introduction of these biomaterials into BESs could fundamentally increase their utilization for a wide range of applications.

View Article and Find Full Text PDF

Constantly increased sewage sludge (SS) and fruit and vegetable wastes (FVW) are becoming the major organic solid wastes in human society. Thus, anaerobic digestion is employed as a low carbon energy strategy to reduce their environmental pollution risk. Anaerobic co-digestion system was developed based on the carbon to nitrogen ratio strategy.

View Article and Find Full Text PDF

In this study, a double E strategy (enzymes and enhancer) characterized by high efficiency for enhancing sewage sludge anaerobic digestion (AD) is proposed. This strategy combines addition of trace elements (TEs) enhancer and enzyme pretreatment, inducing a synergistic effect on AD, and it is more effective and economical compared with TEs addition or enzyme pretreatment in isolation. When adding 400 U/g cocktail enzymes and 1.

View Article and Find Full Text PDF

In this study, to efficiently remove malodorous gas and reduce secondary pollution under mixotrophic conditions, pine bark, coal cinder, straw and mobile bed biofilm reactor (MBBR) fillers were used as packing materials in a biological trickling filter (BTF) to simultaneously treat high-concentration HS and NH. The results showed that the removal rate of BTF-A filled with pine bark was the highest, which was 86.31% and 94.

View Article and Find Full Text PDF

As a new bioremediation technology for toxic metals, microbiologically induced calcite precipitation (MICP) is gradually becoming a research focus. This study investigated the application of MICP to mineralize toxic metals (lead and cadmium) in landfill leachate for the first time. In the experiment of remediating synthetic landfill leachate (SLL) contaminated by Pb, 100% of the 20 mg/L Pb was removed when the maximum urease activity was only 20.

View Article and Find Full Text PDF

Agricultural wastes rich in lignocellulosic biomass have been used in the production of poly-γ-glutamic acid (γ-PGA) through separate hydrolysis and fermentation (SHF), but this process is complicated and generates a lot of wastes. In order to find a simpler and greener way to produce γ-PGA using agricultural wastes, this study attempted to establish simultaneous saccharification and fermentation (SSF) with citric acid-pretreated corn straw. The possibility of Bacillus amyloliquefaciens JX-6 using corn straw as substrate to synthesize γ-PGA was validated, and the results showed that increasing the proportion of glucose in the substrate could improve the γ-PGA yield.

View Article and Find Full Text PDF

Purpose: Colon cancer is one of the malignant tumors that threatens human health. miR-510 was demonstrated to play roles in the progression of various cancers; its dysregulation was speculated to be associated with the development of colon cancer.

Methods: One hundred and thirteen colon cancer patients participated in this research.

View Article and Find Full Text PDF

Due to the promising applications, the demand to enhance poly-γ-glutamic acid (γ-PGA) production while decreasing the cost has increased in the past decade. Here, xylose/glucose mixture and corncob hydrolysate (CCH) was evaluated as alternatives for γ-PGA production by C1. Although both have been validated to support cell growth, glucose and xylose were not simutaneously consumed and exhibited a diauxic growth pattern due to carbon catabolite repression (CCR) in C1, while the enhanced transcription of alleviated the xylose transport bottleneck across a cellular membrane.

View Article and Find Full Text PDF

In this study, a core-shell Fe@Co nanoparticles uniformly modified graphite felt (Fe@Co/GF) was fabricated as the cathode by one-pot self-assembly strategy for the degradation of vanillic acid (VA), syringic acid (SA), and 4-hydroxybenzoic acid (HBA) in the Bio-Electro-Fenton (BEF) system. The Fe@Co/GF cathode showed dual advantages with excellent electrochemical performance and catalytic reactivity not only due to the high electron transfer efficiency but also the synergistic redox cycles between Fe and Co species, both of which significantly enhanced the in situ generation of HO and hydroxyl radicals (OH) to 152.40 μmol/L and 138.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "ZhiYing Yan"

  • - ZhiYing Yan's recent research focuses on innovative bioremediation techniques and microbial applications for environmental sustainability, including effective composting processes, wastewater treatment, and heavy metal pollution remediation.
  • - Key findings include the successful adaptation of psychrotolerant microbes in composting at low temperatures, achieving thermophilic conditions, as well as substantial improvements in nitrogen removal efficiency using HN-AD bacteria in biological trickling filter reactors.
  • - Additionally, the research highlights the development of advanced photocatalysts for organic pollutant degradation and new methodologies for addressing malodor emissions from public toilets through biocomposites, contributing to improved environmental management practices.