Publications by authors named "ZhiShun Huang"

Purpose: Several surgical risk models are widely utilized in general surgery to predict postoperative morbidity. However, no studies have been undertaken to examine the predictive efficacy of these models in biliary tract cancer patients, and other perioperative variables can also influence morbidity. As a result, the study's goal was to examine these models alone, as well as risk models combined with disease-specific factors, in predicting severe complications.

View Article and Find Full Text PDF

Background: Desmoid-type fibromatosis (DF) is characterized by a rare monoclonal fibroblast proliferation that exhibits variable and unpredictable clinical presentation. DF can be classified into sporadic and hereditary types. Despite extensive research efforts, the exact etiology of DF remains elusive.

View Article and Find Full Text PDF

Infantile hemangiomas are common vascular tumors with a specific natural history. The proliferation and regression mechanism of infantile hemangiomas may be related to the multilineage differentiation ability of hemangioma stem cells, but the specific mechanism is not well elucidated. KIAA1429 is an N -methyladenosine methylation-related protein that can also exert its role in a methylation-independent manner.

View Article and Find Full Text PDF

The emergency rescue process of road transportation leakage accidents involving hazardous chemicals is complex and includes various emergency activities. A quantitative study of human errors in emergency activities is conducive to seeking the focus of the emergency rescue process. To quantitatively analyze human error in emergency activities during the emergency rescue process of road transportation leakage accidents of hazardous chemicals, sequentially timed events plotting (STEP) and the cognitive reliability and error analysis method (CREAM), were used.

View Article and Find Full Text PDF

Explant culture is a more suitable method than enzyme digestion for the isolation of keloid fibroblasts (KFs), but it has a longer isolation period. In this study, we propose a long-term explant culture method. Unlike in the conventional explant culture method, we continued culturing explants to isolate KFs rather than discarding them during passage.

View Article and Find Full Text PDF

Human factors are important causes of hazardous chemical storage accidents, and clarifying the relationship between human factors can help to identify the logical chain between unsafe behaviors and influential factors in accidents. Therefore, the human factor relationship of hazardous chemical storage accidents was studied in this paper. First, the human factors analysis and classification system (HFACS), which originated from accident analysis in the aviation field, was introduced.

View Article and Find Full Text PDF

Loss of neuron homeostasis in the arcuate nucleus (ARC) is responsible for diet-induced-obesity (DIO). We previously reported that loss of Rb1 gene compromised the homeostasis of anorexigenic POMC neurons in ARC and induced obesity in mice. To evaluate the development of DIO, we propose to analyze the transcriptomic alteration of POMC neurons in mice following high fat diet (HFD) feeding.

View Article and Find Full Text PDF

The social problems and medical burdens caused by obesity have become more serious in recent years. Obesity is mainly caused by the imbalance of energy intake and consumption in the body. The central nervous system and related neurons regulate the balance of energy metabolism.

View Article and Find Full Text PDF

The virion of dengue virus (DENV) is composed of a viral envelope covering a nucleocapsid formed by a complex of viral genomic RNA and core protein (CP). DENV CP forms a dimer via the internal α2 and α4 helices of each monomer. Pairing of α2-α2' creates a continuous hydrophobic surface, while the α4-α4' helix pair joins the homodimer via side-chain interactions of the inner-edge residues.

View Article and Find Full Text PDF

Dengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease.

View Article and Find Full Text PDF

In this study we showed that the dengue virus (DENV) core protein forms a dimer with an α-helix-rich structure, binds RNA and facilitates the strand annealing process. To assess the RNA chaperone activity of this core protein and other dengue viral RNA-interacting proteins, such as NS3 helicase and NS5 proteins, we engineered cis- and trans-cleavage hammerhead ribozyme constructs carrying DENV genomic RNA elements. Our results indicate that DENV core protein facilitates typical hammerhead structure formation by acting as an RNA chaperone and DENV NS5 has a weak RNA chaperone activity, while DENV NS3 helicase failed to refold RNA with a complex secondary structure.

View Article and Find Full Text PDF

NS3H, the helicase domain of HCV NS3, possesses RNA-stimulated ATPase and ATP hydrolysis-dependent dsRNA unwinding activities. Here, the ability of NS3H to facilitate RNA structural rearrangement is studied using relatively long RNA strands as the model substrates. NS3H promotes intermolecular annealing, resolves three-stranded RNA duplexes, and assists dsRNA and ssRNA inter-conversions to establish a steady state among RNA structures.

View Article and Find Full Text PDF

The helicase domain of dengue virus NS3 protein (DENV NS3H) contains RNA-stimulated nucleoside triphosphatase (NTPase), ATPase/helicase, and RNA 5'-triphosphatase (RTPase) activities that are essential for viral RNA replication and capping. Here, we show that DENV NS3H unwinds 3'-tailed duplex with an RNA but not a DNA loading strand, and the helicase activity is poorly processive. The substrate of the divalent cation-dependent RTPase activity is not restricted to viral RNA 5'-terminus, a protruding 5'-terminus made the RNA 5'-triphosphate readily accessible to DENV NS3H.

View Article and Find Full Text PDF

We used synthetic DNA oligos to investigate the nucleic acid chaperone properties of the N terminal domain of hepatitis delta antigen (NdAg). We found that NdAg possessed a bona fide chaperone activity. NdAg could distinguish subtle differences in the thermal stability of the base pairing region, and enabled DNA oligos to form a more stable duplex among competing sequences through facilitating strand annealing selectively, stimulating duplex conversion selectively, and stabilizing the more stable duplex.

View Article and Find Full Text PDF

The N terminal region of hepatitis delta antigen (HDAg), referred to here as NdAg, has a nucleic acid chaperone activity that modulates the ribozyme activity of hepatitis delta virus (HDV) RNA and stimulates hammerhead ribozyme catalysis. We characterized the nucleic acid binding properties of NdAg, identified the structural and sequence domains important for nucleic acid binding, and studied the correlation between the nucleic acid binding ability and the nucleic acid chaperone activity. NdAg does not recognize the catalytic core of HDV ribozyme specifically.

View Article and Find Full Text PDF

We have previously shown that the N-terminal domain of hepatitis delta virus (NdAg) has an RNA chaperone activity in vitro (Huang, Z. S., and Wu, H.

View Article and Find Full Text PDF