Purpose: The purpose of this investigation is to assess and contrast the effectiveness of the two EuroQol five dimensions questionnaire (EQ-5D) versions-EQ-5D-3L and EQ-5D-5L-in assessing one-year quality of life outcomes for patients with knee osteoarthritis (KOA) undergoing unicompartmental knee arthroplasty (UKA).
Material And Method: From the medical records at the Honghui Hospital, Xi'an Jiaotong University, 402 individuals aged 50 and above, who were one-year post-operation, were selected to fill out survey questionnaires during their return hospital visits. Of these, 231 respondents (57.
Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of / significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells.
View Article and Find Full Text PDFCell Commun Signal
January 2024
Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae.
View Article and Find Full Text PDFAs a copper (Cu) transport ATPase, ATP7B plays an important role in maintaining Cu homeostasis in the body and its dysfunction is associated with retinal disease. How ATP7B dysfunction and the subsequent Cu overload induce retinal damage, however, are unknown. Here, we show that atp7b-/- homozygous zebrafish larvae are insensitive to light stimulation, with a reduction in retinal cells but normal like morphological phenotypes.
View Article and Find Full Text PDFUnbalanced Cu homeostasis has been suggested to be associated with hematopoietic disease, but the roles of Cu overload in the hematopoietic system and the potential mechanisms are obscure. Here, we report a novel association and the novel potential pathways for Cu overload to induce proliferation defects in zebrafish embryonic hematopoietic stem and progenitor cells (HSPCs) down-regulating expression of - axis, which is conserved from fish to mammals. Mechanistically, we show the direct binding of Cu to transcriptional factors HSF1 and SP1 and that Cu overload induces the cytoplasmic aggregation of proteins HSF1 and SP1.
View Article and Find Full Text PDFEAF1 and EAF2, the eleven-nineteen lysine-rich leukemia (ELL)-associated factors which can assemble to the super elongation complex (AFF1/4, AF9/ENL, ELL, and P-TEFb), are reported to participate in RNA polymerase II to actively regulate a variety of biological processes, including leukemia and embryogenesis, but whether and how EAF1/2 function in hematopoietic system related hypoxia tolerance during embryogenesis remains unclear. Here, we unveiled that deletion of EAF1/2 (eaf1 and eaf2) caused reduction in hypoxia tolerance in zebrafish, leading to reduced erythropoiesis during hematopoietic processes. Meanwhile, eaf1 and eaf2 mutants showed significant reduction in the expression of key transcriptional regulators scl, lmo2, and gata1a in erythropoiesis at both 24 h post fertilization (hpf) and 72 hpf, with gata1a downregulated while scl and lmo2 upregulated at 14 hpf.
View Article and Find Full Text PDFMolecular transport and cell circulation between tissues and organs through blood and lymphatic vessels are essential for physiological homeostasis in vertebrates. Despite the report of its association with vessel formation in solid tumors, the biological effects of Copper (Cu) accumulation on angiogenesis and lymphangiogenesis during embryogenesis are still unknown. In this study, we unveiled that intersegmental blood circulation was partially blocked in Cu-stressed zebrafish embryos and cell migration and tube formation were impaired in Cu-stressed mammalian HUVECs.
View Article and Find Full Text PDFParental environmental copper (Cu) exposure is widespread, causing problems for sustainability of fish populations, and epigenetics is suggested to be fundamental during the process, but the mechanism is scarcely reported. Here, we describe the effects of parental environmental Cu exposure on zebrafish developmental abnormality in subsequent generation. This study demonstrated for the first time that: 1.
View Article and Find Full Text PDFUnbalanced copper (Cu ) homeostasis is associated with the developmental defects of vertebrate myogenesis, but the underlying molecular mechanisms remain elusive. In this study, it was found that Cu stressed zebrafish embryos and larvae showed reduced locomotor speed as well as loose and decreased myofibrils in skeletal muscle, coupled with the downregulated expression of muscle fiber markers mylpfa and smyhc1l and the irregular arrangement of myofibril and sarcomere. Meanwhile, the Cu stressed zebrafish embryos and larvae also showed significant reduction in the expression of H3K4 methyltransferase smyd1b transcripts and H3K4me3 protein as well as in the binding enrichment of H3K4me3 on gene mylpfa promoter in skeletal muscle cells, suggesting that smyd1b-H3K4me3 axis mediates the Cu -induced myofibrils specification defects.
View Article and Find Full Text PDFRecently, the responses of embryos to Cu or AgNP stresses have been investigated, but few studies have been performed on the common responses of embryos to both Cu and AgNPs, the same kind of stressor metal. In this study, a large number of commonly down-regulated and up-regulated differentially expressed genes (DEGs) were revealed in both Cu- and AgNP-stressed embryos. The down-regulated DEGs were enriched in myosin complex and muscle structure development, ion transport and metal ion binding, transmission of nerve impulses, etc.
View Article and Find Full Text PDFThe activating transcription factor 4 (ATF4), DNA damage-inducible transcript 3 (DDIT3), growth arrest, and DNA damage-inducible protein 34 (GADD34), endoplasmic reticulum oxidoreductin 1α (ERO1α), and tumor necrosis factor receptor associated factor 2 (TRAF2) cDNAs were first characterized from yellow catfish Pelteobagrus fulvidraco. Compared to corresponding genes of mammals, all of these proteins shared similar conserved domains. Their mRNAs were widely expressed in various tissues, but at variable levels.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
November 2018
The goal of this study was to clone and characterize complete cDNA sequences of three important development-relevant genes of yellow catfish Pelteobagrus fulvidraco, including lrp6, sox9a1 and fgfr2c, and explore their transcriptional responses in several tissues of P. fulvidraco to high fat diet. The predicted amino acid sequences of P.
View Article and Find Full Text PDFBoth magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in NiFeMnSn shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K.
View Article and Find Full Text PDF