Foam cell formation and macrophage polarization are involved in the pathologic development of atherosclerosis, one of the most important human diseases affecting large and medium artery walls. This study was designed to assess the effects of rapamycin and FTY720 (fingolimod) on macrophages and foam cells. Mouse peritoneal macrophages were collected and treated with rapamycin and FTY720 to study autophagy, polarization, and lipid accumulation.
View Article and Find Full Text PDFMouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are usually generated by reprogramming somatic cells through transduction with a transcription factor cocktail. However, the low efficiency of this procedure has kept iPSCs away from the study of the clinical application of stem cell biology. Our research shows that continuous passage increases the efficiency of reprogramming.
View Article and Find Full Text PDFPig pluripotent cells may represent an advantageous experimental tool for developing therapeutic application in the human biomedical field. However, it has previously been proven to be difficult to establish from the early embryo and its pluripotency has not been distinctly documented. In recent years, induced pluripotent stem (iPS) cell technology provides a new method of reprogramming somatic cells to pluripotent state.
View Article and Find Full Text PDFThe well known and most important function of nucleoli is ribosome biogenesis. However, the nucleolus showed delayed development and malfunction in somatic cell nuclear transfer (NT) embryos. Previous studies indicated that nearly half rRNA genes (rDNA) in somatic cells were inactive and not transcribed.
View Article and Find Full Text PDFParthenogenetic embryonic stem cells (PgES) might advance cell replacement therapies and provide a valuable in vitro model system to study the genomic imprinting. However, the differential potential of PgES cells was limited. It could result from relative low heterology of PgES cells compared with ES cells from fertilization (fES), which produce different expression of most imprinted genes.
View Article and Find Full Text PDFIn this study, we generated embryonic stem cells from parthenogenetic embryos (PESCs), and induced them to differentiate to motor neurons, which could be an alternative source of histocompatible cells for replacement of therapy and theoretical foundation for studying the relationship of genome imprint and neural differentiation. The parthenogenetic activation rate of B6D2F1 mouse oocytes was 93.26%.
View Article and Find Full Text PDFSheng Li Ke Xue Jin Zhan
October 2010
Developmental signaling molecules involved in dorsal patterning of the spinal cord have been identified in vivo; however, studies have not produced specific functional dorsal spinal cord neurons in vitro. We present here differentiation of R1 embryonic stem (ES) cells into GABAergic dorsal spinal cord neurons by sequential treatment with developmental signaling molecules. We found that retinoic acid, Bmp4 altered the specification of neural progenitors and instructed neural fate when applied at distinct stages of development.
View Article and Find Full Text PDFAnat Rec (Hoboken)
August 2009
Reprogramming of somatic cells was induced by ES cell-free extract. The system relied on the transient uptake of regulatory components from a nuclear and cytoplasmic extract derived from ES cells by the nucleus of a reversibly permeabilized NIH3T3 cell. NIH3T3 cells were permeabilized by streptolysin O (SLO).
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2009
Previous studies have shown that mesenchymal stem cells (MSCs) enhance repair following injury or degenerative diseases in the central nervous system, but the underlying mechanisms remain unclear. The present study investigated the functional relationship between MSCs and neural stem cells (NSCs) using co-culture systems. Results demonstrated that MSCs promoted outgrowth and guided directional extension of NSC-derived neurites.
View Article and Find Full Text PDFRecently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2008
Objective: To study the role of extracellular matrix (ECM) in neural differentiation of mouse embryonic stem cells (ESCs).
Methods: Mouse ESCs were incubated in the ESC conditioned medium, and the formation of embryonic bodies (EBs) were induced in bacteriological dishes using high-concentration all-trans retinoic acid (RA). The EBs were seeded on different matrixes (gelatin, fibronectin, and laminin/poly-L-ornithine) to test their impact on neural differentiation of the ESCs using immunofluorescence assay.
Tubulin is the major protein of microtubule. alpha- and beta- tubulins form heterodimers, while gamma-tubulin regulates microtubule organization. The present study aimed to observe the dynamic changes of gamma-tubulin in preimplantation development of parthenogenetic mouse embryos.
View Article and Find Full Text PDFMouse embryonic stem (ES) cells can be induced by various chemicals to differentiate into a variety of cell types in vitro. In our study, retinoic acid (RA), one of the most important inducers, used at a concentration of 5 microM, was found to induce the differentiation of ES cells into neural progenitor cells (NPCs). During embryoid body (EB) differentiation, the level of active cyclic AMP response element-binding protein (CREB) was relatively high when 5 microM RA treatment was performed.
View Article and Find Full Text PDFProtein kinase C (PKC) is a critical molecule in cellular signal transduction in mammals. It is involved in many biological processes in embryonic development, including nuclear remodeling, cell cycle adjustment and cellular polarity regulation. The present study aimed to observe the location of PKCα, an important isozyme of PKC, in fertilized, parthenogenetic and tetraploid preimplantation embryos, and compare the expression of PKCα during embryonic compaction in Kunming mice.
View Article and Find Full Text PDF