Publications by authors named "Zhi-xue Cheng"

The prevalence of multidrug-resistant bacteria has been increasing rapidly worldwide, a trend that poses great risk to human and animal health and creates urgent need for pharmaceutical and nonpharmaceutical approaches to stop the spread of disease due to antimicrobial resistance. Here, we found that alanine, aspartate, and glutamate metabolism was inactivated, and glutamine was repressed in multidrug-resistant uropathogenic using a comparative metabolomics approach. Exogenous glutamine promoted β-lactam–, aminoglycoside-, quinolone-, and tetracycline-induced killing of uropathogenic and potentiated ampicillin to eliminate multidrug-resistant , , , , , and .

View Article and Find Full Text PDF

Serum resistance is a poorly understood but common trait of some difficult-to-treat pathogenic strains of bacteria. Here, we report that glycine, serine and threonine catabolic pathway is down-regulated in serum-resistant Escherichia coli, whereas exogenous glycine reverts the serum resistance and effectively potentiates serum to eliminate clinically-relevant bacterial pathogens in vitro and in vivo. We find that exogenous glycine increases the formation of membrane attack complex on bacterial membrane through two previously unrecognized regulations: 1) glycine negatively and positively regulates metabolic flux to purine biosynthesis and Krebs cycle, respectively.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria becomes a major threat to the economy and food safety in aquaculture. Although the antibiotic-dependent strategy is still the mostly adopted option, the development of antibiotic-free approach is urgently needed to ameliorate the severe situation of the global antibiotic resistance. In the present study, we showed that modulating the metabolism of zebrafish, Danio reiro, would enhance D.

View Article and Find Full Text PDF

The development of antibiotic resistance in Vibrio alginolyticus represents a threat to human health and fish farming. Environmental NaCl regulation of bacterial physiology is well documented, but whether the regulation contributes to antibiotic resistance remains unknown. To explore this, we compared minimum inhibitory concentration (MIC) of V.

View Article and Find Full Text PDF

Unlabelled: We previously showed that glucose potentiated kanamycin to kill multidrug-resistant Edwardsiella piscicida through activation of the TCA cycle. However, whether other regulatory mechanism is involved requires further investigation. By quantitative proteomics technology, iTRAQ, we systematically mapped the altered proteins in the presence of glucose and identified 94 differentially expressed proteins.

View Article and Find Full Text PDF

Unlabelled: The overuse and misuse of antibiotics lead to bacterial antibiotic resistance, challenging human health and intensive cultivation. It is especially required to understand for the mechanism of antibiotic resistance to control antibiotic-resistant pathogens. The present study characterized the differential proteome of levofloxacin-resistant Vibrio alginolyticus with the most advanced iTRAQ quantitative proteomics technology.

View Article and Find Full Text PDF

Polyvalent vaccines against more than one species of pathogens are especially important due to the complex ecosystem in aquaculture. We have previously shown that the development of polyvalent vaccines by shuffling six ompA genes from different bacteria with V. parahaemolyticus VP0764 primers.

View Article and Find Full Text PDF

The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens.

View Article and Find Full Text PDF

Vibrio alginolyticus is a waterborne pathogen that infects a wide variety of hosts including fish and human, and the outbreak of this pathogen can cause a huge economic loss in aquaculture. Thus, enhancing host's capability to survive from V. alginolyticus infection is key to fighting infection and this remains still unexplored.

View Article and Find Full Text PDF

Our previous studies demonstrated that molecular breeding via DNA shuffling directs the evolution of polyvalent vaccines with desired traits, which leads to generation of polyvalent ompA vaccines using Vibrio alginolyticus VA0764 primers. Here, we replaced VA0764 primers with Edwardsiella tarda ompA primers to generate new polyvalent ompA vaccines by DNA shuffling of the same five ompA genes from four species of bacteria E. tarda, V.

View Article and Find Full Text PDF

Evasion of complement-mediated killing is a common phenotype for many different types of pathogens, but the mechanism is still poorly understood. Most of the clinic isolates of , an important pathogen infecting both of human and fish, are commonly found serum-resistant. To explore the potential mechanisms, we applied gas chromatography-mass spectrometry (GC-MS)-based metabolomics approaches to profile the metabolomes of EIB202 in the presence or absence of serum stress.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics.

View Article and Find Full Text PDF

Streptococcus agalactiae causes severe systemic infections in human and fish. In the present study, we established a pathogen-plasma interaction model by which we explored how S. agalactiae evaded serum-mediated killing.

View Article and Find Full Text PDF

Streptococcus iniae infection has emerged as a serious fish health and economic problem in the global aquaculture operations. Current antibiotic options are few and possess severe practical limitations and potential adverse environmental impacts. The major factor contributing to the large burden of S.

View Article and Find Full Text PDF

Posttranslational modifications, providing covalent alterations to extend their functions, show protein species on 2-DE gels, but our knowledge on protein species is still limited. In the present study, characteristics of protein species are determined in Escherichia coli using 2-DE based proteomics. In the E.

View Article and Find Full Text PDF