Publications by authors named "Zhi-qiang Tan"

Hearing loss ranks fourth among the principal causes of disability worldwide, and manipulation of progenitor cells may be a key strategy for hair cell regeneration. The present study investigated the role and mechanism of miR‑125 on the proliferation of cochlear progenitor cells (CPCs). CPCs were isolated from the cochleae of neonatal rats, and their morphology was observed.

View Article and Find Full Text PDF

In this study, nano selenium functionalized zinc oxide nanorods, NanoSe@ZnO-NR, was prepared, characterized and investigated for Hg(II) removal from waters of different types. The study results revealed that the material showed a superior adsorption capacity (q, 1110 mg g) and excellent distribution coefficient (K, 9.11 × 10 mL g) which is two or more orders above most of the adsorbents reported in the literature.

View Article and Find Full Text PDF

There are few studies on separation and size characterization of zinc oxide nanoparticles (ZnO-NPs), which have wide applications in several science and technology areas, in the environment. In this work, we report a method for the separation and size characterization of ZnO-NPs by asymmetrical flow field-flow fractionation (AF4) coupled to UV-vis detector. Experimental conditions such as composition of the carrier solution, focus time, crossflow, detector flow rate and injection volume were systematically studied in terms of NPs separation, recovery, and repeatability.

View Article and Find Full Text PDF

Antimony (Sb) is a toxic element which causes different health problems including cardiac problems and lung cancer in humans, and its levels in surface water can be noticeably increased to 100 μg/L typically in the proximity of anthropogenic sources. Thus, besides instrumental techniques, it is of great significance to develop a simple, sensitive and selective analytical method for direct analysis of Sb(III) at trace level without the need of any expensive and/or complicated instrumentations and sample preparation processes. Herein, a simple and sensitive headspace colorimetric assay was developed for the detection of Sb(III) by hydride generation coupled with thioglycolic acid functionalized gold nanoparticles (TGA-AuNPs).

View Article and Find Full Text PDF

It is a great challenge to monitor the physical and chemical transformation of nanoparticles at environmentally relevant concentration levels, mainly because the commonly used techniques like dynamic light scattering and transmission electron microscopy are unable to characterize and quantify trace level nanoparticles in complex matrices. Herein, we demonstrate the on-line coupled system of hollow fiber flow field-flow fractionation (HF5), minicolumn concentration, and inductively coupled plasma mass spectrometry (ICPMS) detection as an efficient approach to study the aggregation and chemical transformation of silver nanoparticles (AgNPs) and ionic Ag species in the aqueous environment at ng/mL levels. Taking advantage of the in-line dialysis of HF5, the selective capture of Ag(I) species by the resin in minicolumn, and the high selectivity and sensitivity of ICPMS detection, we recorded the aggregation of 10 ng/mL AgNPs in complex matrices (e.

View Article and Find Full Text PDF

A novel headspace colorimetric nanosensor strategy for specific detection of Hg(II) was developed based upon analyte induced etching and amalgamation of gold nanoparticles (AuNPs). The Hg(II) was first selectively reduced to its volatile form, Hg(0), by stannous chloride (SnCl) through chemical cold vapor generation (CVG) reaction. Then, the Hg(0) was headspace extracted into 37μL thioglycolic acid functionalized AuNP aqueous suspension containing 10% methanol as extractant and simultaneously reacted with AuNPs through the strong metallophilic Hg-Au interaction, resulting in a red-to-blue color change.

View Article and Find Full Text PDF

Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state.

View Article and Find Full Text PDF

Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination.

View Article and Find Full Text PDF

Hollow fiber supported liquid membrane (HFSLM) extraction was coupled with ICP-MS for speciation analysis of labile Ag(I) and total Ag(I) in dispersions of silver nanoparticles (AgNPs) and environmental waters. Ag(I) in aqueous samples was extracted into the HFSLM of 5%(m/v) tri-n-octylphosphine oxide in n-undecane, and stripped in the acceptor of 10 mM Na2S2O3 and 1 mM Cu(NO3)2 prepared in 5 mM NaH2PO4-Na2HPO4 buffer (pH 7.5).

View Article and Find Full Text PDF

The intertransformation of silver nanoparticles (AgNPs) and ionic silver (Ag(I)) in the environment determines their transport, uptake, and toxicity, demanding methods to simultaneously separate and quantify AgNPs and Ag(I). For the first time, hollow fiber flow field-flow fractionation (HF5) and minicolumn concentration were on-line coupled together with multiple detectors (including UV-vis spectrometry, dynamic light scattering, and inductively coupled plasma mass spectrometry) for full spectrum separation, characterization, and quantification of various Ag(I) species (i.e.

View Article and Find Full Text PDF

Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.

View Article and Find Full Text PDF

The exposure of millions of people to unsafe levels of arsenite (AsIII) and arsenate (AsV) in drinking waters calls for the development of low-cost methods for on-site monitoring these two arsenic species in waters. Herein, for the first time, tetradecyl (trihexyl) phosphonium chloride ionic liquid was found to selectively bind with AsIII via extended X-ray absorption fine structure (EXAFS) analysis. Based on the finding, an AsIII-specific probe was developed by modifying gold nanoparticles with the ionic liquid.

View Article and Find Full Text PDF

By combining Fe(3)O(4) magnetic nanoparticle-based solid phase extraction with a gold nanoparticle-based visual test, a novel method was developed for the field assay of Cu(ii) in environmental water at subparts per billion-levels within 30 min. When a 200 mL water sample was treated with 12.5 mg L(-1) Fe(3)O(4) nanoparticles by the proposed procedure, the detection limit with the naked eye was 0.

View Article and Find Full Text PDF

The rapid growth in commercial use of silver nanoparticles (AgNPs) will inevitably increase silver exposure in the environment and the general population. As the fate and toxic effects of AgNPs is related to the Ag(+) released from AgNPs and the transformation of Ag(+) into AgNPs, it is of great importance to develop methods for speciation analysis of AgNPs and Ag(+). This study reports the use of Triton X-114-based cloud point extraction as an efficient separation approach for the speciation analysis of AgNPs and Ag(+) in antibacterial products and environmental waters.

View Article and Find Full Text PDF

A static and exhaustive extraction mode of hollow fiber-supported liquid membrane was developed for field sample passive pretreatment of environmental water samples. The extraction device was prepared by immobilizing dihexyl ether in the wall of a polypropylene hollow fiber membrane (60 cm length, 50 μm wall thickness, and 280 μm id) as liquid membrane and filling the fiber lumen with 0.1 M NaOH as acceptor, and closing the two ends of the fiber with an aluminum foil.

View Article and Find Full Text PDF

Objective: To study the expression of brain-derived neurotrophic factor (BDNF) gene modified bone marrow mesenchymal stem cells (MSC) in the cochlea of drug-deafened guinea pigs and its protection to spiral ganglion cells (SGC).

Methods: Guinea pigs deafened by subcutaneous injection of amikacin were randomly divided into two groups, BDNF gene modified bone marrow MSC were injected into the cochlea through fenestration of scala tympani in the experimental group, while artificial perilymphatic fluid were injected in the control group. Experimental animals were executed at 7 and 28 days post-operation.

View Article and Find Full Text PDF

Objective: To investigate the protective role of brain-derived neurotrophic factor (BDNF) gene transfected bone-marrow mesenchymal stem cells (BMSC) on cochlear spiral ganglion cells (SGC) impaired by aminoglycoside antibiotics (AmAn).

Methods: The differentiation of BMSC transfected by BDNF gene (BDNF-BMSC) were detected with immunohistochemical examination of Nestin, neuron-specific enolase (NSE), and glial fibrillary acid protein (GFAP) antibody in vitro. BDNF gene transfected BMSC were transplanted into the cochleae of guinea pigs deafened by amikacin, while the control groups were designed in which artificial perilymphatic fluid (APF), BMSC or BDNF gene was injected into cochleae alone.

View Article and Find Full Text PDF

With the combination of the gold nanoparticle (AuNP)-based visual test with hollow fiber supported liquid membrane (HFSLM) extraction, a highly sensitive and selective method was developed for field detection of mercuric ion (Hg(2+)) in environmental waters. Hg(2+) in water samples was extracted through HFSLM and trapped in the aqueous acceptor and then visually detected based on the red-to-blue color change of 3-mercaptopropionic acid-functionalized AuNP (MPA-AuNP) probe. The highest extraction efficiency of Hg(2+) was obtained by using a 600 mL sample (pH 8.

View Article and Find Full Text PDF

Association with Hg(2+) enhances the hydrophobicity and triggers the cloud point extraction of approximately 4 nm-diameter gold nanoparticle probes functionalized with mercaptopropionic acid and homocystine, which results in the color change of the TX-114-rich phase from colorless to red, and therefore provides a novel approach for visual and colorimetric detection of Hg(2+) with ultrahigh sensitivity and selectivity.

View Article and Find Full Text PDF