Publications by authors named "Zhi-jie Zhang"

Background: Dry eye syndrome (DES) significantly affects quality of life. Meibomian Gland Dysfunction (MGD) is a primary contributor to DES and may be drug-induced.

Research Design And Methods: This study analyzed data from the FDA Adverse Event Reporting System (FAERS) between January 2004 and September 2023 using the Ratio of Odds Ratios (ROR) and Proportional Reporting Ratio (PRR) to detect potential drug-induced MGD signals.

View Article and Find Full Text PDF

The objective of this study is to investigate the association between the Systemic Immune-Inflammation Index (SII) and cataracts. This cross-sectional study analyzed data from the 2005-2008 NHANES to examine the relationship between the SII and cataract prevalence. Covariates included age, race/ethnicity, gender, education level, marital status, Body Mass Index (BMI), smoking, alcohol consumption, hypertension, hyperlipidemia, and diabetes.

View Article and Find Full Text PDF

Objective: This study evaluates the risk of ocular adverse events (AEs) associated with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) using data from the FDA Adverse Event Reporting System (FAERS) and network pharmacology methods.

Methods: FAERS data from 2004 to 2024 were analyzed for ocular AEs linked to GLP-1 RA treatments. Disproportionality analysis (Reporting Odds Ratio, ROR) was used to identify signals, and a drug-gene interaction network explored potential mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Fossil energy is running out and causing significant environmental issues, making hydrogen energy a promising alternative that’s clean and has high energy density, produced via water electrolysis using renewable sources.
  • The electrolysis process includes two key reactions: the hydrogen evolution reaction at the cathode and the oxygen evolution reaction (OER) at the anode, which is complex due to a high energy barrier requiring efficient catalysts.
  • Recent research on oxyhydroxide (MOOH) catalysts has focused on their two catalytic mechanisms and strategies to enhance their performance and stability, while also highlighting ongoing challenges and future directions for OER catalyst development.
View Article and Find Full Text PDF

Platelet activation is closely related to thrombosis. Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE has excellent anti-inflammatory, antioxidant, and inhibitory platelet activation effects, preventing thrombosis.

View Article and Find Full Text PDF

Background: Colonoscopic enteral tube placement using current methods has some shortcomings, such as the complexity of the procedure and tube dislodgement. The magnetic navigation technique (MNT) has been proven effective for nasoenteral feeding tube placement, and is associated with reduced cost and time to initiation of nutrition. This study attempted to develop a novel method for enteral tube placement using MNT.

View Article and Find Full Text PDF

Zinc-air batteries (ZABs) have the advantages of high energy density and rich zinc raw materials. It is a low-cost, green and sustainable energy storage device. At present, one of the key technologies that hinder the large-scale application of ZABs is the design and fabrication oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) bifunctional catalysts with excellent performance, especially the non-platinum-based catalysts.

View Article and Find Full Text PDF

Objective: This investigation aims to elucidate the correlations between dietary intakes of vitamin E, B6, and niacin and the incidence of cataracts, utilizing the comprehensive NHANES 2005-2008 dataset to affirm the prophylactic roles of these nutrients against cataract formation.

Methods: Using data from the NHANES 2005-2008 cycles, this analysis concentrated on 7,247 subjects after exclusion based on incomplete dietary or cataract data. The identification of cataracts was determined through participants' self-reported ophthalmic surgical history.

View Article and Find Full Text PDF

Using oxidizing compounds to handle the recycling of discarded lithium batteries has advanced significantly in recent years. One of the most prominent methods is the sintered electrode powder treatment using pre-used additives, with an aqueous solution of the oxidizing agent fueling highly selective lithium extraction and transition metals retention in the refractory material. Herein, phosphoric acid (HPO) was used as the exchanger and hydrogen ions provider, the oxidant (KSO) activity was driven by heating, the raw material structure was deformed and adjusted by the oxidizing drive, and lithium was exhausted, while manganese was converted into manganese(III) phosphate hydrate and manganese dioxide insoluble material.

View Article and Find Full Text PDF

Water electrolysis has become an attractive hydrogen production method. Oxygen evolution reaction (OER) is a bottleneck of water splitting as its four-electron transfer procedure presents sluggish reaction kinetics. Designing composite catalysts with high performance for efficient OER still remains a huge challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Flexible rechargeable Zn-air batteries (FZABs) are promising for wearable electronics due to their lightweight and eco-friendly properties, but their performance is hindered by slow oxygen reactions at the air cathode.* -
  • Enhancing the activity and stability of bifunctional catalysts is critical, with two main strategies being the use of powder-based and flexible self-supported air cathodes.* -
  • The paper reviews recent advancements in catalyst structures, discusses strategies for improving catalyst synthesis, and highlights ongoing challenges in the field of FZABs.*
View Article and Find Full Text PDF

A long-term goal of rechargeable zinc-air batteries (ZABs) has always been to design bifunctional electrocatalysts that are robust, effective, and affordable for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It has become a feasible method to construct metal/metal oxide interfaces to achieve superior electrocatalytic performance for ORR and OER by enhanced charge transfer. In this study, Co/CoO heterojunctions were successfully prepared and encased in porous N-doped mesoporous carbon (Co/CoO@NC) via a simple condensation-carbonization-etching method.

View Article and Find Full Text PDF

Objective: To review the effectiveness of different physical therapies for acute and sub-acute low back pain supported by evidence, and create clinical recommendations and expert consensus for physiotherapists on clinical prescriptions.

Data Sources: A systematic search was conducted in PubMed and the Cochrane Library for studies published within the previous 15 years.

Review Methods: Systematic review and meta-analysis, randomized controlled trials assessing patients with acute and sub-acute low back pain were included.

View Article and Find Full Text PDF

Feldspar is a high-abundance mineral in the earth's crust, and its natural weathering and dissolution processes are an important phenomenon on the earth's surface. This study focused on the dissolution behavior of silicon (Si) and aluminum (Al) in feldspar minerals (microcline and albite) when exposed to low-molecular-weight organic acids (LMWOAs). Various analytical techniques, including atomic absorption spectrophotometer, X-ray diffraction, scanning electron microscope, and Fourier-transform infrared spectroscopy, were employed to investigate these processes.

View Article and Find Full Text PDF

Compared with the traditional electrolysis of water to produce hydrogen, urea-assisted electrolysis of water to produce hydrogen has significant advantages and has received extensive attention from researchers. Unfortunately, urea oxidation reaction (UOR) involves a complex six-electron transfer process leading to high overpotential, which forces researchers to develop high-performance UOR catalysts to drive the development of urea-assisted water splitting. Based on the UOR mechanism and extensive literature research, this review summarizes the strategies for preparing highly efficient UOR catalysts.

View Article and Find Full Text PDF
Article Synopsis
  • Transition metal nitrides (TMNs) show promise as alternatives to precious metals like Pt and Ir in electrocatalysis due to their excellent performance, conductivity, and resistance to corrosion.
  • Unlike carbon-based materials, which are prone to corrosion and instability, TMNs offer greater durability and stability in harsh conditions.
  • The paper reviews the synthesis, catalytic mechanisms, and applications of TMNs in key reactions like hydrogen evolution (HER) and oxygen reduction (ORR), while also addressing their limitations and future research challenges.
View Article and Find Full Text PDF

Abnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients.

View Article and Find Full Text PDF
Article Synopsis
  • MXenes are advanced two-dimensional materials known for their impressive optical, electric, and magnetic properties, with over 30 different types due to various combinations of transition metals and C/N.
  • This review covers the last five years of research on MXenes, focusing on their preparation methods (bottom-up and top-down) and their significant roles in electrocatalytic applications like hydrogen evolution and carbon dioxide reduction reactions.
  • The study highlights that modifying MXenes by changing functional groups or combining them with other materials can enhance their electrocatalytic performance, emphasizing the need for environmentally friendly production methods, especially for MXene nitrides.
View Article and Find Full Text PDF

In this work, a polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel (PEI-CS/Ce-UIO-66) was prepared using the ex-situ blend method. The synthesized composite hydrogel was characterized by SEM, EDS, XRD, FTIR, BET, XPS, and TG techniques, while the zeta potential was recorded for sample analysis. The adsorbent performance was studied by conducting adsorption experiments using methyl orange (MO), which showed that PEI-CS/Ce-UIO-66 exhibited excellent MO adsorption properties (900.

View Article and Find Full Text PDF

A high sintering temperature is required to acquire excellent performance in the production of porcelain but results in high fuel consumption. To prepare the porcelain with outstanding performance at a lower temperature, a self-produced additive containing calcium (CaK) was added into a three-component system of kaolinite-feldspar-quartz. XRD and SEM were used to characterize the samples.

View Article and Find Full Text PDF

For nearly 2000 years, Eucommia ulmoides Oliver (EUO) has been utilized in traditional Chinese medicine (TCM) throughout China. Flavonoids present in bark and leaves of EUO are responsible for their antioxidant, anti-inflammatory, antitumor, anti-osteoporosis, hypoglycemic, hypolipidemic, antibacterial, and antiviral properties, but the main bioactive compound has not been established yet. In this study, we isolated and identified quercetin glycoside (QAG) from EUO leaves (EUOL) and preliminarily explored its molecular mechanism in improving insulin resistance (IR).

View Article and Find Full Text PDF

Background: The cerebellum is involved in regulating motor, affective, and cognitive processes. It is a promising target for transcranial direct current stimulation (tDCS) intervention in stroke.

Objectives: To review the current evidence for cerebellar tDCS (ctDCS) in stroke, its problems, and its future directions.

View Article and Find Full Text PDF

As a biomass resource, corncob is a kind of agricultural by-product with wide sources and low cost. Because its composition contains a large number of functional polymers such as cellulose, chitosan, and semi chitosan, corncob can be chemically modified to prepare a variety of adsorption materials. In this study, a magnetic gel material (PEI-CC@FeO) consisting of corncob modified by glutaraldehyde-crosslinked polyethyleneimine (PEI) was successfully prepared and applied to the adsorption of heavy metal ions in aqueous solutions.

View Article and Find Full Text PDF

Deficits in the flexibility of the quadriceps are one of the risk factors for developing knee joint disorders. No studies have investigated the changes in the stiffness of the quadriceps muscle among patients with knee osteoarthritis (OA). Therefore, the purpose of this study was to investigate changes in the stiffness of specific-muscle of the quadriceps in patients with knee OA and their relationship with functional ability.

View Article and Find Full Text PDF

Background: Some patients with knee osteoarthritis (KOA) show pain, stiffness and limited flexion and extension at the back of the knee, leading to dysfunction and affecting life. This may be related to changes in the biomechanical properties of skeletal muscles. Shear wave elastography (SWE) can detect these changes by measuring muscle shear modulus.

View Article and Find Full Text PDF